Принцип действия транзистора
В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку.
В npn транзисторе электроны, основные носители тока в эмиттере проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер.
Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк=α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер.
В широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β=α/(1-α)=(10-1000). Т.о. изменяя малый ток базы можно управлять значительно большим током коллектора.
Биполярный транзистор – электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для усиления, преобразования и генерации электрических сигналов. Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности.
Будет интересно Как работает диод с барьером Шоттки
Средняя область называется базой, одна из крайних областей – эмиттером, другая – коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный – между базой и эмиттером и коллекторный – между базой и коллектором.
Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора. Транзистор работает в трех режимах в зависимости от напряжения на его переходах.
При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном – обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.
Типы биполярных транзисторов.
Аналоги
Тип | Pc | Ucb | Uce | Ueb | Ic | Tj | Ft | Hfe | Корпус |
---|---|---|---|---|---|---|---|---|---|
2N3055 | 117 W | 100 V | 70 V | 7 V | 15 A | 200 °C | 0,2 MHz | 20 | TO3 |
2N5630 | 200 W | 120 V | 120 V | 7 V | 20 A | 200 °C | 1 MHz | 20 | TO3 |
2N5671 | 140 W | 120 V | 90 V | 7 V | 30 A | 200 °C | 50 MHz | 20 | TO3 |
2N6678 | 175 W | 650 V | 400 V | 8 V | 15 A | 3 MHz | от 8 | TO3 | |
2N6254 | 150 W | 100 V | 90 V | 7 V | 15 A | 200 °C | 0,8 MHz | 20 | TO3 |
2N6322 | 200 W | 300 V | 200 V | 30 A | 200 °C | 40 | TO3 | ||
2SC6011 | 160 W | 200 V | 200 V | 15 A | 20 MHz | 50 | TO3P | ||
BDY58 | 175 W | 160 V | 125 V | 10 V | 25 A | 200 °C | 10 MHz | 20 | TO3 |
BDY77 | 150 W | 150 V | 120 V | 7 V | 16 A | 200 °C | 0,8 MHz | 40 | TO3 |
BD130 | 100 W | 100 V | 60 V | 15 A | 1 MHz | 20…70 | TO3 | ||
BUR52 | 350 W | 350 V | 250 V | 10 V | 60 A | 200 °C | 10 MHz | 20 | TO3 |
BUS13 | 175 W | 850 V | 400 V | 9 V | 15 A | 200 °C | 30 | TO3 | |
BUS14 | 250 W | 850 V | 400 V | 9 V | 30 A | 200 °C | 30 | TO3 | |
BUS52 | 350 W | 350 V | 200 V | 40 A | 200 °C | 20 | TO3 | ||
BUV12 | 150 W | 300 V | 250 V | 7 V | 20 A | 200 °C | 8 MHz | 20 | TO3 |
BUV21 | 150 W | 250 V | 200 V | 7 V | 40 A | 200 °C | 8 MHz | 20 | TO3 |
BUX10 | 150 W | 160 V | 125 V | 7 V | 25 A | 200 °C | 8 MHz | 20 | TO3 |
BUX48 | 175 W | 800 V | 400 V | 7 V | 15 A | от 8 | TO3 | ||
BUX48A | 175 W | 1000 V | 450 V | 7 V | 15 A | 200 °C | 30 | TO3 | |
BUX92 | 300 W | 500 V | 500 V | 60 A | 200 °C | 5 MHz | 30 | TO3 | |
MJ10005 | 175 W | 500 V | 400 V | 8 V | 20 A | 200 °C | 40 | TO3 | |
MJ10016 | 250 W | 700 V | 500 V | 8 V | 60 A | 200 °C | 25 | TO3 | |
MJ10022 | 250 W | 450 V | 350 V | 8 V | 40 A | 200 °C | 50 | TO3 | |
MJ10023 | 250 W | 600 V | 400 V | 8 V | 40 A | 200 °C | 50 | TO3 | |
MJ15026 | 250 W | 200 V | 250 V | 7 V | 16 A | 200 °C | 4 MHz | 25 | TO3 |
MJL21194 | 200 W | 250 V | 16 A | 4 MHz | 25 | TO3PBL TO264 | |||
MJL21196 | 200 W | 250 V | 16 A | 4 MHz | 25 | TO3PBL TO264 | |||
MJL3281A | 200 W | 260 V | 15 A | 30 MHz | 75 | TO3PBL TO264 | |||
MJL4281A | 230 W | 350 V | 15 A | 35 MHz | 80 | TO3PBL TO264 | |||
MJ15015 | 180 W | 200 V | 120 V | 7 V | 15 A | 1 MHz | 20…70 | TO3 | |
MJ15015G | 180 W | 200 V | 120 V | 7 V | 15 A | 1 MHz | 20…70 | TO3 | |
MJ12022 | 175 W | 850 V | 450 V | 6 V | 15 A | 15 MHz | от 5 | TO3 | |
NJW0302 | 150 W | 250 V | 15 A | 30 MHz | 75 | TO3P | |||
NJW1302 | 200 W | 250 V | 15 A | 30 MHz | 75 | TO3P | |||
NJW21194 | 200 W | 250 V | 15 A | 4 MHz | 20 | TO3P | |||
SK3260 | 150 W | 160 V | 140 V | 7 V | 30 A | 200 °C | 0,8 MHz | 75 | TO3 |
SM1258 | 250 W | 400 V | 50 A | 200 °C | 20 MHz | 20 | TO3 |
В качестве отечественного производителя могут подойти транзисторы 2Т808А, КТ819ГМ.
Примечание: данные в таблицах взяты из даташип компаний-производителей.
Виды транзисторов
По принципу действия и строению различают полупроводниковые триоды:
- полевые;
- биполярные;
- комбинированные.
Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.
Полевые
Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:
- Транзисторы с управляющим p-n переходом (рис. 6).
- С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
- МДП, со структурой: металл-диэлектрик-проводник.
Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.
Детали очень чувствительны к статическому электричеству.
Схемы полевых триодов показано на рисунке 5.
Рис. 5. Полевые транзисторыРис. 6. Фото реального полевого триода
Обратите внимание на название электродов: сток, исток и затвор. Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора
Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п
Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п
Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.
Биполярные
Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.
Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.
Более детально о строении и принципе работы рассмотрим ниже.
Комбинированные
С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:
- биполярные транзисторы с внедрёнными и их схему резисторами;
- комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
- лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
- конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).
Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.
Это интересно: Вихревые токи Фуко — причины возникновения и применение
2N3906 характеристики. 2N3906 datasheet. PNP.
2N3906 PNP
ЗАСТОСУВАННЯ:
ДОБРЕ ПІДХОДИТЬ ДЛЯ ТВ ТА ПОБУТОВОЇ ТЕХНІКИ
МАЛОГО НАВАНТАЖЕННЯ ПЕРЕКЛЮЧАЮЧОГО ТРАНЗИСТОРА
2N3906 datasheet pdf
TO-92
Заміна та аналог транзистора 2N3906:
2N4403, 2SA696, 2SA697, 2SA708, BC527, BC528, KN2907, KN2907A, KN3906, KSA708, KSP2907A, KSP55, KSP56, KSP8598, KSP8599, KTN2907, KTN2907A, MPS2907, MPS2907A, MPS2907AG, MPS2907G, MPS3906, MPS4354, MPS4355, MPS750, MPS750G, MPS751, MPS751G, MPS8598, MPS8598G, MPS8599, MPS8599G, MPSA55, MPSA55G, MPSA56, MPSA56G, MPSW51A, MPSW51AG, MPSW55, MPSW55G, MPSW56, MPSW56G, P2N2907A, P2N2907AG, PN200, PN2905, PN2905A, PN2907, PN2907A, PN4354, PN4355, ZTX550 or ZTX951.
Характеристики 2N3906
Параметр | Символ | Значення | Одиниця |
Напруга колектор – емітер | VCEO | 60 | Vdc |
Напруга колектор − база | VCBO | 40 | Vdc |
Напруга емітер − база | VEBO | 6 | Vdc |
Максимально допустимий постійний струм колектора | IC | 200 | mAdc |
Загальна розсіювана потужність при TA = 25°C | PD | 625 | mWmW/°C |
Загальна розсіювана потужність при TA = 60°C | PD | 250 | WmW/°C |
Температура зберігання | T stg | -65 to 150 | °C |
Макс. Робоча температура | T j | 150 | °C |
ТЕПЛОВІ ХАРАКТЕРИСТИКИ 2N3906
Характеристика | Символ | Max. | Одиниця |
Термічний опір, з’єднання з навколишнім середовищем | RJA | 200 | °C/W |
Термічний опір, з’єднання з корпусом | RJC | 83.3 | °C/W |
ЕЛЕКТРИЧНІ ХАРАКТЕРИСТИКИ 2N3906
(TA = 25°C, якщо не зазначено інше)
Характеристика | Символ | Min. | Max. | Одиниця |
ВИМК. ХАРАКТЕРИСТИКИ | ||||
Напруга пробою колектор–емітер (IC = 1. 0 mAdc, IB = 0) | V(BR)CEO | 40 | – | Vdc |
Напруга пробою колектор-база (IC = 10 μAdc, IE = 0) | V(BR)CBO | 40 | – | Vdc |
Напруга пробою база-емітер (IE = 10 μAdc, IC = 0) | V(BR)EBO | 5.0 | – | |
Базовий граничний струм (VCE = 30 Vdc, VEB = 3.0 Vdc) | IBL | – | 50 | nAdc |
Струм відсічення колектора (VCE = 30 Vdc, VEB = 3.0 Vdc) | ICEX | – | 50 | nAdc |
ВВІМК. ХАРАКТЕРИСТИКИ | ||||
Коефіцієнт постійного струму(IC = 0.1 mAdc, VCE = 1.0 Vdc)(IC = 1.0 mAdc, VCE = 1.0 Vdc)(IC = 10 mAdc, VCE = 1.0 Vdc)(IC = 50 mAdc, VCE = 1.0 Vdc)(IC = 100 mAdc, VCE = 1.0 Vdc) | hFE | 60801006030 | −−300−− | − |
Напруга насичення колектор–емітер(IC = 10 mAdc, IB = 1.0 mAdc)(IC = 50 mAdc, IB = 5.0 mAdc | VCE(sat) | −− | 0.250.4 | Vdc |
Напруга насичення бази-емітера (IC = 10 mAdc, IB = 1. 0 mAdc)(IC = 50 mAdc, IB = 5.0 mAdc) | VBE(sat) | 0.65− | 0.850.95 | Vdc |
ХАРАКТЕРИСТИКИ СЛАБОГО СИГНАЛУ
Характеристика | Символ | Min | Max | Одиниця |
Коефіцієнт підсилення струму − добуток пропускної здатності (IC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz) | fT | 250 | − | MHz |
Вихідна ємність (VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz) | C obo | − | 4.5 | pF |
Вхідна ємність (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) | C ibo | − | 10 | pF |
Вхідний опір (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1. 0 kHz) | hie | 2.0 | 12 | kΩ |
Коефіцієнт зворотного зв’язку за напругою (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) | hre | 0.1 | 10 | X10− 4 |
Підсилення струму слабкого сигналу (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz | hfe | 100 | 400 | − |
Вихідний допуск (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) | hoe | 3.0 | 60 | μmhos |
Коефіцієнт шуму (IC = 100μ Adc, VCE = 5.0 Vdc, RS = 1.0 k, f = 1.0 kHz) | NF | − | 4.0 | dB |
ХАРАКТЕРИСТИКИ ПЕРЕМИКАННЯ
Характеристика | Символ | Min | Max | Одиниця | |
Час затримки | (VCC = 3.0 Vdc, VBE = 0.5 Vdc,IC = 10 mAdc, IB1 = 1. 0 mAdc) | td | − | 35 | ns |
Час наростання | (VCC = 3.0 Vdc, VBE = 0.5 Vdc,IC = 10 mAdc, IB1 = 1.0 mAdc) | tr | − | 35 | ns |
Час зберігання | (VCC = 3.0 Vdc, IC = 10 mAdc, IB1 = IB2 = 1.0 mAdc) | ts | − | 225 | ns |
Час спаду | (VCC = 3.0 Vdc, IC = 10 mAdc, IB1 = IB2 = 1.0 mAdc) | tf | − | 75 | ns |