Транзистор b861 технические характеристики

Транзистор b772: характеристики (параметры), отечественные анлоги, цоколевка

Принцип работы транзистора B861

Транзистор B861 относится к биполярным транзисторам и представляет собой полупроводниковое устройство, основанное на использовании эффекта транзисторного перехода. Принцип его работы заключается в управлении и усилении электрического сигнала.

Транзистор B861 состоит из трех слоев, которые называются эмиттером, базой и коллектором. Дважды перекрещивающиеся p-n-переходы между этими слоями образуют два p-n-перехода, которые называют эмиттерным и коллекторным.

Принцип работы транзистора B861 основан на том, что эмиттерный переход пропускает электрони и их дырки. Когда на базу подается управляющий сигнал, изменяется ширина обедненной зоны базы и, следовательно, изменяется прохождение электронного тока от эмиттера к коллектору. Таким образом, транзистор выполняет функции усиления и управления электрическим сигналом.

Особенностью транзистора B861 является его повышенная мощность и низкое сопротивление переходов, что позволяет эффективно управлять большими электрическими токами и реализовывать усилительные функции.

Аналоги

Для замены подойдут транзисторы кремниевые, со структурой PNP, эпитаксиальнопланарные, которые применяются в широкополосных усилителях мощности, умножителях частоты и автогенераторах высокочастотного диапазона.

Отечественное производство

Модель PC UCB UCE UBE IC TJ fT CC hFE Корпус Примеча-ние
2SB772 12,5 (1,25) 60 30 5 3 150 50 60 TO-126
(2)КТ914А 7 65 65 4 0,8 150 350 12
(2)КТ932А/Б/В 20 80/60/40 4,5 2 150 100 300 от 15 до 120 TC ≤ 50°C
(2)КТ933А/Б 5 80/60 4,5 0,5 150 75 100 от 15 до 120 TC ≤ 50°C
КТ973А/Б/В/Г 8 60/45/60/60 5 2 150 от 750 до 5000
КТ974А/Б/В 5 80/60/50 3 2 150 450 80 от 10 до 120 TC ≤ 50°C

Зарубежное производство

Модель PC UCB UCE UBE IC TJ fT CC hFE Корпус
2SB772 12,5 (1,25) 60 30 5 3 150 50 60 TO-126
2SA1359 (O, Y) 10,0 (1,0) 40 40 5 3 150 100 35 70 TO-126
2SB843 10,0 (1,0) 50 40 6 5 175 90 TO-126
BTB1424AD3 10,0 (1,0) 50 50 6 3 150 240 35 180 TO-126
BTB1424AT3 10,0 (1,0) 50 50 6 3 150 240 35 180 TO-126
H772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
HT772 10,0 (1,0) 40 30 5 3 150 80 55 100 TO-126
KSH772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
ST2SB772T 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
2SA1761 (0,9) 60 50 6 3 150 100 120 TO-92
2SA3802 (0,8) 40 30 6 3 150 80 60 TO-92
2SB985 (R, S, T, U) (1) 60 60 6 3 165 150 280 TO-92
BR3CG3802 (0,8) 40 30 6 3 150 80 60 TO-92
KTB985 (1) 60 50 6 3 150 150 100 TO-92
ZTX949 (1,2) 50 30 6 4,5 200 120 100 TO-92
ZTX951 (1,2) 100 60 6 4 200 100 TO-92
ZTX953 (1,2) 140 100 6 3,5 200 125 100 TO-92
2SA2039-TL-E 15 50 50 6 5 150 360 24 200 TO-252
2SA2126-TL-E 15 50 50 6 3 150 390 24 200 TO-252
2SAR573D 10 50 50 6 3 150 300 35 180 TO-252
BTA2039J3 15 60 50 6 5 150 150 42 200 TO-252
BTB1184J3 15 6 3 150 80 35 180 TO-252
BTB1184J3S 15 6 3 150 80 35 270 TO-252
BTB9435J3 10 40 32 6 3 150 180 20 180 TO-252

Примечание: данные в таблицах взяты из даташит компаний-производителей.

Транзистор кт502, характеристики, маркировка, аналоги, цоколевка

Транзисторы КТ502 универсальные кремниевые эпитаксиально-планарные структуры p-n-p.
Применяются в усилителях низкой частоты, операционных и дифференциальных усилителях, импульсных устройствах, преобразователях.

№1 — Эмиттер

№2 — База

№3 — Коллектор

Маркировка КТ502

КТ503А — сбоку светложелтая точка, сверху темнокрасная точка

КТ503Б — сбоку светложелтая точка, сверху желтая точка

КТ503В — сбоку светложелтая точка, сверху темнозеленая точка

КТ503Г — сбоку светложелтая точка, сверху голубая точка

КТ503Д — сбоку светложелтая точка, сверху синяя точка

КТ503Е — сбоку светложелтая точка, сверху белая точка

Предельные параметры КТ502

Максимально допустимый постоянный ток коллектоpа (IК max):

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 150 мА

Максимально допустимый импульсный ток коллектоpа (IК, и max):

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 350 мА

Граничное напряжение биполярного транзистора (UКЭ0 гр) при ТП = 25° C:

  • КТ502А — 25 В
  • КТ502Б — 25 В
  • КТ502В — 40 В
  • КТ502Г — 40 В
  • КТ502Д — 60 В
  • КТ502Е — 80 В

Максимально допустимое постоянное напряжение коллектор-база при токе эмиттера, равном нулю (UКБ0 max) при ТП = 25° C:

  • КТ502А — 40 В
  • КТ502Б — 40 В
  • КТ502В — 60 В
  • КТ502Г — 60 В
  • КТ502Д — 80 В
  • КТ502Е — 90 В

Максимально допустимое постоянное напряжение эмиттеp-база при токе коллектоpа, равном нулю (UЭБ0 max) при ТП = 25° C:

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 5 В

Максимально допустимая постоянная рассеиваемая мощность коллектоpа (PК max) при Т = 25° C:

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 350 мВт

Максимально допустимая температура перехода (Tп max):

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 125 ° C

Максимально допустимая температура окружающей среды (Tmax):

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е —

(adsbygoogle = window.adsbygoogle || []).push({});
85 ° C

Электрические характеристики транзисторов КТ502 при ТП = 25oС

Статический коэффициент передачи тока биполярного транзистора (h21Э) при (UКЭ) 5 В, (IЭ) 10 мА:

  • КТ502А — 40 — 120
  • КТ502Б — 80 — 240
  • КТ502В — 40 — 120
  • КТ502Г — 80 — 240
  • КТ502Д — 40 — 120
  • КТ502Е — 40 — 120

Напряжение насыщения коллектор-эмиттер (UКЭ нас):

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 0,6 В

Обратный ток коллектоpа (IКБ0)

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 1 мкА

Граничная частота коэффициента передачи тока (fгр)

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 5 МГц

if ( rtbW >= 960 ){ var rtbBlockID = «R-A-744188-3»; }
else { var rtbBlockID = «R-A-744188-5»; }

window.yaContextCb.push(()=>{Ya.Context.AdvManager.render({renderTo: «yandex_rtb_4»,blockId: rtbBlockID,pageNumber: 4,onError: (data) => { var g = document.createElement(«ins»);
g.className = «adsbygoogle»;
g.style.display = «inline»;
if (rtbW >= 960){
g.style.width = «580px»;
g.style.height = «400px»;
g.setAttribute(«data-ad-slot», «9935184599»);
}else{
g.style.width = «300px»;
g.style.height = «600px»;
g.setAttribute(«data-ad-slot», «9935184599»);
}
g.setAttribute(«data-ad-client», «ca-pub-1812626643144578»);
g.setAttribute(«data-alternate-ad-url», stroke2);
document.getElementById(«yandex_rtb_4»).appendChild(g);
(adsbygoogle = window.adsbygoogle || []).push({}); }})});

window.addEventListener(«load», () => {

var ins = document.getElementById(«yandex_rtb_4»);
if (ins.clientHeight == «0») {
ins.innerHTML = stroke3;
}
}, true);

Емкость коллекторного перехода (CК)

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 20 пФ

Емкость эмиттерного перехода (CЭ)

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 15 пФ

Тепловое сопротивление переход-среда (RТ п-с)

КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 214 ° C/Вт

Опубликовано 16.03.2020

Применение транзистора B861 в электронике

Основное преимущество транзистора B861 заключается в его высоком коэффициенте усиления, что позволяет использовать его в схемах усилителей. Он также обладает низким уровнем шума и низким уровнем искажений, что делает его идеальным для применения в звуковых устройствах и аудиосистемах.

Транзистор B861 может быть использован в схемах усиления постоянного и переменного тока, благодаря низкому сопротивлению открытого перехода. Он применяется в различных схемах стабилизации напряжения и тока, блокировки напряжения и генерации сигналов. Также его можно использовать в схемах переключения и модуляции.

Благодаря малым габаритам и низкому энергопотреблению, транзистор B861 также широко применяется в мобильных устройствах, таких как смартфоны и планшеты. Он может использоваться в схемах управления мощностью и усилителях для аудиосигналов, обеспечивая высокое качество звука и надежную работу устройства.

Технические характеристики транзистора B861

Основные технические характеристики транзистора B861:

  • Тип транзистора: PNP;
  • Максимальное коллекторное напряжение: 45 В;
  • Максимальный коллекторный ток: 1.5 А;
  • Максимальная мощность: 0.8 Вт;
  • Максимальная рабочая частота: 20 МГц;
  • Коэффициент усиления тока (hfe): 60-300;
  • Корпус: TO-92;
  • Температурный диапазон: от -55 до +150 °C;
  • Производитель: различные компании.

Транзистор B861 обладает высокой надежностью и долговечностью, что делает его предпочтительным выбором для множества приложений. Он отлично подходит для работы в широком диапазоне температур и способен выдерживать значительные электрические нагрузки.

При выборе транзистора B861 для конкретного использования необходимо учитывать технические требования и параметры схемы, в которой он будет применяться. Рекомендуется ознакомиться с документацией и руководством по использованию данного транзистора для более подробной информации о его характеристиках и особенностях.

Распиновка

Стандартная цоколевка 2n5401, если смотреть на маркировку, слева на право: эмиттер, база, коллектор. Он изготавливается в пластмассовом корпусе с гибкими ножками. Большинство производителей делают его в корпусе TO-92.

Компания Unisonic Technologies, выпускает данное устройство в корпусе SOT-89. Расположение выводов слева на право: база, коллектор, эмиттер. Будьте внимательны при выборе транзистора, некоторые фирмы изготавливают его с другим порядком расположения контактов. Например у Hottech Industrial, цоколевка такая, слева на право: 1 — эмиттер, 2 — коллектор, 3 — база.

Справка об аналогах биполярного высокочастотного pnp транзистора 2N5401.

Эта страница содержит информацию об аналогах биполярного высокочастотного pnp транзистора 2N5401 .

Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора.

Можно попробовать заменить транзистор 2N5401 транзистором 2N5400; транзистором BF491; транзистором ECG288; транзистором КТ502Е; транзистором MPSA92; транзистором MPSA93; транзистором MPSL51;

транзистором MPSL51; транзистором 2SB646; транзистором 2SB646A; транзистором 2SA637; транзистором 2SB647; транзистором 2SB647A; транзистором 2SA638; транзистором 2SA639; транзистором BC526A; транзистором BC404VI;

Энергоэффективность транзистора b861

Транзистор b861 отличается высокой энергоэффективностью, что делает его идеальным выбором для различных электронных устройств. Благодаря превосходным техническим характеристикам и особенностям работы, этот транзистор обеспечивает оптимальное сочетание производительности и энергосбережения.

Одной из основных причин, почему транзистор b861 обладает высокой энергоэффективностью, является его низкое энергопотребление во время работы. Благодаря этому, устройства, в которых используется этот транзистор, могут работать более длительное время без необходимости замены или подзарядки аккумуляторов.

Также стоит отметить, что транзистор b861 обладает высокой эффективностью переключения. Это означает, что он быстро переходит из одного состояния в другое, что позволяет сократить энергопотребление и увеличить эффективность работы устройства.

Благодаря высокой энергоэффективности, транзистор b861 находит широкое применение в различных сферах. Он используется в электронике, телекоммуникациях, промышленности и других отраслях, где энергосбережение является важным фактором.

Транзистор b861 является надежным и энергоэффективным компонентом, который может значительно повысить эффективность работы различных устройств и систем. Благодаря своим техническим характеристикам и особенностям, он является отличным выбором для проектов, где требуется высокая производительность и энергосбережение.

Описание транзистора 2N4403

Транзистор 2N4403 — биполярный, кремниевый, высокочастотный (30 МГц > FГР < 300 МГц) транзистор типа P-N-P, средней мощности (300 мВт > PК,МАКС < 1,5 Вт). Тип корпуса TO-92. Аналоги данного транзистора это транзисторы: NTE159, SK3466, BC327, BSS80C, PN200, THC4403, TMPT4403, 2N2907, 2N4143*, 2N4972*, 2N6001*, 2N6003*, 2N6005*, 2N6007*, 2N6011*, 2N6013*, 2N6015* A5T2907*, A5T4403*.

Транзистор
UКЭ0 /UКБ0 ПРОБВ
IК, МАКСмА
PК, МАКСмВт
h21Э
fгрМГц
Изготовитель

мин.
макс.
IКмА
UКЭВ
Название (полное)
Название (сокращённое)

2N4403
40/40
600
350
100

150
10
200
American Microsemiconductor Inc
AmerMicroSC

Advanced Semiconductor tnc
Advncd Semi

Allegro Microsystems Inc
AlegroMicro

Central Semiconductor Corp
CentralSemi

Continental Device India Ltd
Contin Dev

Crimson Semiconductor Inc
CrimsonSimi

Diodes Inc
Diodes Inc

Elm State Electronics lnc
Elm State

Hi-Tron Semiconductor
Hi-Tron

Toshiba Corp/Industria Mexicana Toshiba SA

KSL Microdevices Ing
KSL Micro

Micro Electronics Ltd
Micro Еlecs

Microsemi Corp
Microsemi

Mistral SPA
Mistral SpA

Motorola Semiconductor Products Inc
Motorola

NAS Etektronische Halbleiter Gmbh
NAS Elekt

National Semiconductor Corp
Natl Semi

Rochester Electronics Inc
Rochester

Rohm Со Ltd
Rohm Со Ltd

Samsung Electronics Inc
Samsung

Semelab Plc
Semelab

Semiconductors Inc
Semi Inc

Semiconductor Technology Inc
SemiconTech

Intex Со Inc/Semitronics Corp
Semitronics

Solid State Inc
Solid Stinc

Swampscott Electronics Со Inc
Swampscott

Toshiba America Electronic Components Inc
ToshibaAmer

Transistor Со
Transistor

United-Page Inc, UPI Semiconductor Division
UPI Semi

Space Power Electronics Inc
Space Power

Цоколёвка

Тип
Номера выводов

1
2
3

3 вывода
E
B
C

UКЭ0, ПРОБ — пробивное напряжение коллектор-эмиттер биполярного транзистора при токе базы, равном нулю.

UКБ0, ПРОБ — пробивное напряжение коллектор-база биполярного транзистора.

UКЭ — напряжение источника питания коллектора биполярного транзистора при измерении h21Э.

IК, МАКС — максимально допустимый постоянный ток коллектора биполярного транзистора.

IК — постоянный ток коллектора биполярного транзистора при измерении h21Э.

h21Э — статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером.

fГР — граничная частота коэффициента передачи тока в схеме с общим эмиттером.

PК, МАКС — максимально допустимая постоянная рассеиваемая мощность коллектора биполярного транзистора.

* — Транзистор не является полным аналогом, но возможна замена.

Важно знать о надежности транзистора b861

Основная область применения транзистора b861 — это электронные схемы, требующие низкого уровня шума и низкого сопротивления. Он часто применяется в усилителях и других аудио- и видеоустройствах. Транзистор b861 обеспечивает стабильность и надежность в работе.

Технические характеристики транзистора b861 также играют важную роль в его надежности. Он обладает высоким коэффициентом усиления и способен работать при высоких температурах. Транзистор b861 имеет низкую емкость коллектора и эмиттера, что позволяет ему эффективно контролировать ток.

Особенности транзистора b861 также влияют на его надежность. Он обладает низким уровнем шума, что делает его идеальным выбором для приложений, где требуется высокое качество звука. Также, транзистор b861 обладает высокой стойкостью к электромагнитным помехам, что обеспечивает его надежную работу в различных условиях.

В целом, для тех, кто работает с электроникой и в частности с транзисторами, важно знать о надежности транзистора b861. Он обладает низким уровнем шума, высоким коэффициентом усиления и способностью работать при высоких температурах

Он также обладает низкой емкостью и стойкостью к электромагнитным помехам. Транзистор b861 — надежное решение для различных электронных схем и устройств.

Характеристика КТ315

Несмотря на то, что КТ315 считается настоящим ветераном-транзистором, его характеристика даже на сегодняшний день является не самой худшей, а в свое время — настоящим прорывом. Развитие в сфере транзисторов повлияла на уход КТ315 с рынка.

Рассмотрим характеристику КТ315 в корпусе КТ-26 (ТО-92). В datasheet говорится, что:

  1. рабочая температура КТ315 от -45 °С до +100 °С;
  2. максимальное напряжение коллектор-база равняется от 20 В до 40 В;
  3. предельное напряжение коллектор-эмиттер равняется от 20 В до 60 В;
  4. наивысшее напряжение эмиттер-база равняется 6 В;
  5. максимальный постоянный ток коллектора равен 100 мА, но у КТ315Ж1 и у КТ315И1 — 50 мА;
  6. рассеиваемая мощность коллектора равна 150 мВТ, а у КТ315Ж1 и у КТ315И1 — 100 мВТ.

Электрическая характеристика

Как и говорилось, “оранжевая чума” достаточно неплоха в работе, но ее показатели слишком отстают ее конкурентов (чего только стоит работа при максимальной температуре в +100 °С, что очень мало).

Электрические характеристики будут проанализированы с условием, что температура окружающей среды будет равна +25 °С.

  • Обратный ток коллектора от 0,5 нА до 0,6 нА;
  • Обратный ток эмиттера от 3 мкА до 50 мкА;
  • Напряжение насыщения коллектор-эмиттер от 0,4 В до 0,9 В;
  • Напряжение насыщения база-эмиттер от 0,9 В до 1,35 В;
  • Емкость коллекторного перехода — 7 пФ, у КТ315Ж1 — 10 пФ, у КТ315И1 — 10 пФ;
  • Граничная частота коэффициента передачи тока — 250 МГц;
  • Постоянная времени цепи обратной связи от 300 пс до 1000 пс.

Классификация

Всего насчитывается 10 видов КТ315 (от А1 до Р1). Они различаются по своим показателям, например, напряжение насыщения коллектор-эмиттер у А1 составляет 25 В, а у В1 — 40 В. Всю остальную информацию можно посмотреть в этой таблице.

Маркировка

КТ315 отличает не только его внешний вид, но и отметка. Она сосредоточена в цифро-буквенном значении (нужно выделить, что буква всегда расположена в левом углу), а у тех, кто отличался повышенной надежностью и использовался для компьютеров, телевизоров и т.д., рядом с маркировкой стояла точка. Как говорилось ранее, два кремниевых транзистора очень легко спутать

Чтобы этого избежать, важно обратить свое внимание на описываемый пункт. Какая маркировка у КТ315 понятна, а у КТ361 она отличается тем, что буква размещена посередине самого корпуса

Мнение специалистов о транзисторе b861

Специалисты отмечают высокую надежность работы транзистора b861 в различных условиях. Он отлично справляется с большими нагрузками и обеспечивает стабильную работу электронных схем.

Одним из основных преимуществ транзистора b861 является его низкое потребление энергии. Благодаря этому он эффективно экономит заряд аккумуляторов и продлевает время работы электронных устройств.

Транзистор b861 отлично подходит для работы в различных устройствах, таких как источники питания, преобразователи напряжения, усилители звука, импульсные блоки питания и другие. Это делает его незаменимым элементом для многих инженеров и разработчиков.

Компактный размер и низкая стоимость делают транзистор b861 доступным для широкого круга потребителей. Благодаря этому, он активно используется в производстве массовых электронных устройств, таких как смартфоны, ноутбуки, планшеты и другие.

Основываясь на отзывах специалистов, можно сделать вывод, что транзистор b861 имеет высокую надежность, низкое потребление энергии, широкий спектр применения и доступную стоимость. Он является отличным выбором для различных электронных устройств и пользуется большим спросом на рынке.

Рекомендации по выбору транзистора B861 и его использованию

Ознакомьтесь с техническими характеристиками транзистора B861
Обратите внимание на максимально допустимые значения напряжения и тока, а также на коэффициент усиления.
Используйте специализированные ресурсы и каталоги для поиска информации о транзисторе B861

Важно узнать допустимые значения параметров и условия эксплуатации, чтобы быть уверенным в том, что данный транзистор подходит для вашей схемы.
Учитывайте условия окружающей среды и требования к рабочей температуре
Транзистор B861 имеет определенные ограничения по рабочей температуре, поэтому важно выбирать подходящую теплоотводящую конструкцию и обеспечивать достаточную вентиляцию.
Проверьте соответствие транзистора B861 активным и пассивным элементам вашей схемы. Обратите внимание на значения напряжения и тока, чтобы обеспечить их совместимость.
Внимательно изучите информацию о схеме подключения транзистора B861

Обратите внимание на правильность разводки выводов и соединение с другими компонентами.
При монтаже транзистора B861 следуйте рекомендациям производителя, чтобы избежать повреждения или неправильного функционирования. Особое внимание уделите правильной установке и качественной пайке контактов.

Следуя нашим рекомендациям, вы сможете безопасно выбрать и использовать транзистор B861 в своих электронных схемах. Удачи вам!

Зачем нужна маркировка

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Маркировка на практике

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся

Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений

Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.

Разнообразные корпуса транзисторов.

Маркировка SMD компонентов

SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.

Код Сопротивление
101 100 Ом
471 470 Ом
102 1 кОм
122 1.2 кОм
103 10 кОм
123 12 кОм
104 100 кОм
124 120 кОм
474 470 кОм

Маркировка импортных SMD

Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.

Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.

Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.

Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.

Основные особенности транзистора B861

  • Тип: B861 относится к типу NPN и представляет собой триполярный транзистор. Это означает, что его состоит из трех слоев: эмиттера, базы и коллектора, в которых носители заряда перемещаются при работе прибора.
  • Напряжение и ток: Транзистор B861 обладает высоким напряжением сток-эмиттер (Vceo) и коллектор-эмиттер (Vces), что позволяет использовать его в различных электронных цепях. Максимальный коллекторный ток (Ic) для B861 составляет определенные значения.
  • Мощность: Устройство обладает высокой мощностью, что позволяет использовать его в схемах с высокими энергетическими требованиями.
  • Температурный диапазон: B861 может работать в широком температурном диапазоне, что делает его устойчивым к различным климатическим условиям. Это одна из ключевых особенностей транзистора, позволяющая применять его в различных областях.

Таким образом, транзистор B861 обладает рядом уникальных характеристик, которые делают его идеальным компонентом для использования в различных электронных схемах и устройствах.

Пользуйтесь преимуществами транзистора b861

Во-первых, транзистор b861 отличается высокой надежностью и долговечностью. Он способен работать в широком диапазоне температур и в условиях повышенной влажности, что делает его идеальным для использования в различных климатических условиях.

Во-вторых, б861 обладает высокой мощностью и эффективностью работы. Он способен обрабатывать большие энергетические потоки и обеспечивает высокую эффективность работы системы, в которой он применяется.

Кроме того, транзистор b861 имеет малые габариты и легко интегрируется в электронные схемы. Благодаря своим компактным размерам, он занимает минимальное пространство на плате и позволяет создать более компактные и эффективные устройства.

Одним из ключевых преимуществ транзистора b861 является его высокая скорость коммутации

Он способен обеспечивать быстрое переключение между состояниями, что особенно важно в приложениях, требующих быстрых и точных реакций

Неотъемлемой особенностью транзистора b861 является его низкое потребление энергии. Он работает с минимальными энергетическими затратами, что способствует увеличению энергоэффективности всей системы.

В итоге, транзистор b861 является надежным, мощным, эффективным и компактным элементом электронной техники. Он находит применение во множестве устройств, от электронных схем и компьютеров до телекоммуникационного оборудования и электроэнергетических систем.

Модификации и группы транзистора B772

Модель PC UCB UCE UBE IC TJ fT CC hFE Корпус
2SB772 12,5 (1,25) 60 30 5 3 150 50 60 TO-126
2SB772 (R, O, Y, GR) 10,0 (1,0) 40 30 5 3 150 40 55 160 TO-126
BTB772ST3 10,0 (1,0) 40 30 5 2 150 80 55 180 TO-126
BTB772T3 10,0 (1,0) 40 30 5 3 150 80 55 180 TO-126
CSB772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
CSB772 (P, Q, R, E) 10,0 (1,0) 40 30 5 3 150 80 55 200 TO-126
FTB772 (1.25) 40 30 6 3 150 80 55 60 TO-126
KSB772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
KSB772 (R, O, Y, GR) 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
KTB772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
PMB772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
ST2S772T 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
TSB772CK 10,0 (1,0) 50 30 5 3 150 80 55 100 TO-126
B772C (1.25) 40 30 6 3 150 50 60 TO-126C
B772P 15,0 (1,25) 40 30 6 3 150 50 120 TO-126D
HSB772 10,0 (1,0) 40 30 5 3 150 80 55 100 TO-126ML
2SB772B 25,0 (2,0) 40 30 5 3 150 80 55 60 TO-220
2SB772I 10,0 (1,0) 40 30 5 3 150 80 55 30 TO-251
B772PC 10,0 (1,0) 40 30 6 3 150 50 120 TO-251
BTB772I3 10,0 (1,0) 40 30 5 3 150 80 55 180 TO-251
WTP772 10,0 (1,0) 40 30 5 3 150 80 55 30 TO-251
2SB772D 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-252
B772 (R, O, Y, GR) 10,0 (1,0) 40 30 6 3 150 50 60 TO-252
BTB772AJ3 15,0 (1,0) 50 30 7 3 150 190 33 180 TO-252
BTB772J3 10,0 (1,0) 40 30 6 3 150 80 55 180 TO-252
FTB772D 10,0 (1,0) 40 30 6 3 150 50 60 TO-252
GSTD772 10,0 (1,0) 40 30 5 3 150 80 60 TO-252
ST2SB772R 10,0 (1,0) 40 30 6 3 150 50 100 TO-252
B772M (1.25) 40 30 6 3 150 50 60 TO-252-2L
2SB772A (0.5) 70 60 6 3 150 50 60 SOT-89
2SB772GP (1.5) 40 30 5 3 150 100 55 160 SOT-89
2SB772T (0.5) 40 30 5 3 150 80 55 60 SOT-89
BTB772AM3 (2) 50 50 6 3 150 80 25 180 SOT-89
FTB772F (0.5) 40 30 6 3 150 50 60 SOT-89
GSTM772 (0.5) 40 30 5 3 150 80 60 SOT-89
KXA1502 (0.5) 40 20 5 1.5 150 100 20 160 SOT-89
L2SB772 (P, Q) (0.5) 40 30 6 3 150 50 160 SOT-89
ST2SB772U 10,0 (1,0) 40 30 5 3 150 80 55 60 SOT-89
ZX5T250 (0.5) 70 60 6 3 150 50 160 SOT-89
2SB772S (0.5) 40 30 5 3 150 80 45 100 SOT-89
ALJB772 (1) 40 30 6 1.5 150 100 200 TO-92
B772S (0.625) 40 30 6 3 150 50 60 TO-92
BTB772SA3 (0.75) 50 50 5 3 150 80 55 180 TO-92
GSTS772 (0.625) 40 30 5 3 150 80 60 TO-92
HB772S (0.75) 40 30 5 3 150 80 55 100 TO-92
HSB772S (0.75) 40 30 5 3 150 80 55 100 TO-92
TSB772SCT (0.625) 50 30 5 3 150 80 55 100 TO-92
2SB772L 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-92LM
2SB772M (0.35) 40 30 5 3 150 80 45 100 SOT-23
B772SS 10,0 (0,35) 40 30 5 3 150 80 45 100 SOT-23
2SB772N 10,0 (1,0) 40 30 5 3 150 80 55 60 SOT-223
2SB772ZGP (1.5) 40 30 5 3 150 100 55 160 SOT-223

Примечения:

  1. Столбец корпуса. Уточнения для следующих корпусов: TO-251 или TO-252, TO-252  или DPAK, SOT-89 или TO-92.
  2. В столбце «Модель» в скобках указаны дополнительные символы, вводимые в обозначение транзистора в случаях, когда производитель классифицирует изделия по группам параметра hFE.
  3. В столбце мощности «PC Tc(Ta) = 25°С» в скобках указывается значение рассеиваемой мощности в режиме ограничения температуры внешней среды на уровне TA = 25°C.
  4. В режиме ограничения температуры корпуса транзистора TC = 25°C значение рассеиваемой мощности указывается в основном для транзисторов, выпускаемых в крупных корпусах, например, таких как TO-126. Поскольку такой температурный режим означает присутствие охладителя – устройства, стабилизирующего температуру корпуса, для транзисторов, выпускаемых в малоразмерных корпусах (TO-92, SOT-89), где применение охладителя на практике невозможно или нецелесообразно, значение рассеиваемой мощности для условия TC = 25°C большинством производителей не указывается.
  5. Иногда производитель выпускает изделие в корпусе версии повышенной мощности (например – TO-92LM). В этом случае указывается повышенное значение мощности рассеивания (см. таблицу, транзистор 2SB772L).
Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: