Mjd3055 pdf даташит

What is mjd3055?

Аналоги

Тип  Pc  Ucb  Uce  Ueb  Ic  Tj  Ft  Hfe Корпус
2N3055  117 W  100 V  70 V  7 V  15 A  200 °C  0,2 MHz  20  TO3
2N5630  200 W  120 V  120 V  7 V  20 A  200 °C  1 MHz  20  TO3
2N5671  140 W  120 V  90 V  7 V  30 A  200 °C  50 MHz  20  TO3
2N6678 175 W 650 V 400 V 8 V 15 A 3 MHz от 8  TO3
2N6254  150 W  100 V  90 V  7 V  15 A  200 °C  0,8 MHz  20  TO3
2N6322  200 W  300 V  200 V  30 A  200 °C  40  TO3
2SC6011  160 W  200 V  200 V  15 A  20 MHz  50  TO3P
BDY58  175 W  160 V  125 V  10 V  25 A  200 °C  10 MHz  20  TO3
BDY77  150 W  150 V  120 V  7 V  16 A  200 °C  0,8 MHz  40  TO3
BD130 100 W 100 V 60 V 15 A 1 MHz 20…70  TO3
BUR52  350 W  350 V  250 V  10 V  60 A  200 °C  10 MHz  20  TO3
BUS13  175 W  850 V  400 V  9 V  15 A  200 °C  30  TO3
BUS14  250 W  850 V  400 V  9 V  30 A  200 °C  30  TO3
BUS52  350 W  350 V  200 V  40 A  200 °C  20  TO3
BUV12  150 W  300 V  250 V  7 V  20 A  200 °C  8 MHz  20  TO3
BUV21  150 W  250 V  200 V  7 V  40 A  200 °C  8 MHz  20  TO3
BUX10  150 W  160 V  125 V  7 V  25 A  200 °C  8 MHz  20  TO3
BUX48 175 W 800 V 400 V 7 V 15 A от 8  TO3
BUX48A  175 W  1000 V  450 V  7 V  15 A  200 °C  30  TO3
BUX92  300 W  500 V  500 V  60 A  200 °C  5 MHz  30  TO3
MJ10005  175 W  500 V  400 V  8 V  20 A  200 °C  40  TO3
MJ10016  250 W  700 V  500 V  8 V  60 A  200 °C  25  TO3
MJ10022  250 W  450 V  350 V  8 V  40 A  200 °C  50  TO3
MJ10023  250 W  600 V  400 V  8 V  40 A  200 °C  50  TO3
MJ15026  250 W  200 V  250 V  7 V  16 A  200 °C  4 MHz  25  TO3
MJL21194  200 W  250 V  16 A  4 MHz  25  TO3PBL TO264
MJL21196  200 W  250 V  16 A  4 MHz  25  TO3PBL TO264
MJL3281A  200 W  260 V  15 A  30 MHz  75  TO3PBL TO264
MJL4281A  230 W  350 V  15 A  35 MHz  80  TO3PBL TO264
MJ15015 180 W 200 V 120 V 7 V 15 A 1 MHz 20…70  TO3
MJ15015G 180 W 200 V 120 V 7 V 15 A 1 MHz 20…70  TO3
MJ12022 175 W 850 V 450 V 6 V 15 A 15 MHz от 5  TO3
NJW0302  150 W  250 V  15 A  30 MHz  75  TO3P
NJW1302  200 W  250 V  15 A  30 MHz  75  TO3P
NJW21194  200 W  250 V  15 A  4 MHz  20  TO3P
SK3260  150 W  160 V  140 V  7 V  30 A  200 °C  0,8 MHz  75  TO3
SM1258  250 W  400 V  50 A  200 °C  20 MHz  20  TO3

В качестве отечественного производителя могут подойти транзисторы 2Т808А, КТ819ГМ.

Примечание: данные в таблицах взяты из даташип компаний-производителей.

Устройство IRF3205

Устройство и работа данного транзистора не имеет никаких отличий от устройств и работ других n-канальных МОП-транзисторов.

12 недорогих наборов электроники для самостоятельной сборки и пайки

Моя личная подборка конструкторов с Aliexpress «сделай сам» для пайки от простых за 153 до 2500 рублей. Дочке 5 лет — надо приучать к паяльнику))) — пусть пока хотя-бы смотрит — переходи посмотреть, один светодиодный куб чего только стоит

При подаче положительного напряжения между контактом затвора и истока между подложкой и контактом затвора образуется поперечное электрическое поле. Это поле притягивает отрицательно заряженные электроны к поверхностному слою диэлектрика. В результате такого заряда, в этом слое образуется некая область проводимости — так называемый “канал”.

Стоит заметить, что заряд накапливается, в своего рода, электрическом конденсаторе, состоящем из электрода затвора и подложки с диэлектриком. В этом конденсаторе обкладки — металлический вывод затвора и область подложки, а изоляторы — диэлектрики, состоящие из оксида кремния. Именно исходя из характеристик этого конденсатора и складывается параметр емкости затвора транзистора.

Усилитель на транзисторах 13002

Хотя компактные люминесцентные лампы уже непопулярны, у многих самодельщиков накопились платы от них. Среди прочих компонентов, там присутствуют транзисторы типов 13001, 13002, 13003. Хотя они считаются ключевыми, перевести их в линейный режим общепринятым способом не составляет труда, выходная мощность при этом, конечно, невелика. Так, например, автор Instructables под ником Utsource123 собрал из двух таких транзисторов составной (его также называют транзистором Дарлингтона, который сделал соответствующее изобретение в 1953 году) и построил на нём простой однотактный усилитель мощности звуковой частоты (УМЗЧ). Поскольку мастер решил не составлять схему усилителя, переводчику пришлось восстановить её по описанию и фотографиям. Получилась самая обыкновенная схема УМЗЧ на составном транзисторе без каких-либо особенностей. На старых транзисторах МП она выглядела бы точно так же. С учётом противоположной структуры, конечно.

Смещение на базу резистором, конденсатор, чтобы это смещение не попало в источник сигнала — всё как обычно. Конденсатор на 100 мкФ, 25 В, резистор на 1 кОм.

Первым делом мастер знакомит читателей с цоколёвкой транзистора 13002:

Затем он, как и положено при сборке из двух транзисторов одного составного, соединяет эмиттер первого транзистора с базой второго. Хорошо, они как раз расположены рядом.

Впаивает резистор смещения между коллектором и базой первого транзистора. Благодаря ему оба транзистора будут работать в линейном режиме.

Подключает к базе первого транзистора плюсовой вывод конденсатора:

Соединяет коллекторы обоих транзисторов перемычкой:

Подключает сигнальный кабель: общий провод припаивает к эмиттеру второго транзистора, а выход любого из стереоканалов — к минусовому выводу конденсатора:

Один вывод динамической головки соединяет с плюсом питания, второй — с соединёнными вместе коллекторами обоих транзистора. Минус питания подаёт на эмиттер второго транзистора.

Усилитель готов к работе. Если не добавлять к нему регулятор громкости, источник сигнала придётся взять такой, в котором соответствующий регулятор имеется. И можно слушать.

Собрав второй такой же усилитель и подав на него сигнал с другого стереоканала, вы получите стереофонический эффект.

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Как проверить IRF3205

Это делается, как и с любым другим полевым транзистором с изолированным затвором. Для этого достаточно одного лишь мультиметра.

Перед тем, как проводить проверку рекомендую вам замкнуть все выводы пинцетом между собой, во избежания порчи элемента статическим электричеством (если такое имеется).

Проверка диода

На что нужно обратить внимание первым делом, так это на проверку диода внутри транзистора. Для этого включаем на мультиметре режим прозвонки и прикасаемся красным щупом к контакту истока, а черным к контакту стока

Мультиметр в этом случае должен показывать значение около 400-700. После этого меняем местами щупы — тогда мультиметр должен показывать 1, если мультиметр ограничен индикацией — 1999. Высококлассные мультиметры с ограничением в 4000 будут отображать 2800.

Проверка работы транзистора

Из-за того, что в нашем случае элемент оснащен n-каналом, то для его открытия необходимо на затвор, приложить положительный потенциал. Только в таком случае через транзистор начнет проходить ток.

Снова включаем режим прозвонки на мультиметре, отрицательным щупом прикасаемся к истоку, положительный же к стоку.

В случае исправного транзистора, линия исток-сток начнет проводить ток, другими словами транзистор откроется. Чтобы это проверить, нужно прозвонить исток-сток. В случае, если мультиметр показывает какое-либо значение, значит все работает.

После проверки открытия транзистора, необходимо проверить его закрытие. Для этого на затвор нужно приложить отрицательный потенциал. Для этого присоединим отрицательный щуп к затвору, а положительный к истоку.

Снова проверяем сток-исток и тогда все, что должен показать мультиметр — падение на встроенном диоде.

Если все вышеописанные условия выполняются, значит транзистор полностью исправен и его можно использовать в своих проектах.

Маркировка IRF3205

В маркировке данного транзистора первые две буквы (IR) означают первого производителя — International Rectifier. Сейчас этот транзистор выпускается многими компаниями, но именно с этой началась история этого компонента.

Помимо оригинальной версии, на данный момент существует еще и бессвинцовая версия, которая помечается постфиксом “Z” — (IRF3205Z), но раньше обозначение выглядело по-другому, а именно — “PbF”, что расшифровывается как Plumbum Free.

А также существуют версии в других корпусах: IRF3205ZL — TO262 (припаивание стока-радиатора к плате для охлаждения) и IRF3205ZS — D2Pak (для поверхностного монтажа).

TO262 и D2Pak, который иначе называется TO263, отличаются тем, что первый предназначен для монтажа в отверстия на плате, после чего загибается и припаивается радиатором к ней же. TO263, в свою очередь, не требует отверстий и обладает короткими выводами, что позволяет использовать его при поверхностном монтаже на небольших платах.

Применение IRF3205

Максимальное напряжение стока-истока в 55 В дает возможность использовать этот транзистор в схемах преобразователей напряжения, импульсных источников питания, блоков питания, источниках бесперебойного питания и прочем. Также зачастую при создании высокочастотных инверторов.

Так как IRF3205 имеет малую паразитную емкость, а, соответственно, и время открытия/закрытия, в совокупности с очень маленьким сопротивлением, то он является универсальным вариантом для многих проектов, связанных с коммутацией небольшого напряжения.

Если же Вам не хватает токовых характеристик этого транзистора, Вы можете подключить несколько штук параллельно, что дает хорошую возможность использовать его для управления большой нагрузкой.

Зачем нужен транзистор 3055 и как он работает?

Основная функция транзистора 3055 — управлять потоком тока между его коллектором и эмиттером. Он предназначен для работы с большими токами и обладает высокой мощностью.

Транзистор 3055 является типом NPN биполярного транзистора. Он состоит из трех областей, которые называются эмиттер, база и коллектор. При подаче малого входного сигнала на базу, транзистор переключается в режим насыщения, в результате чего между коллектором и эмиттером проходит большой ток. Когда входной сигнал отсутствует или находится в низком состоянии, транзистор находится в режиме отсечки, и ток между коллектором и эмиттером приближается к нулю.

Важным параметром транзистора 3055 является его максимальный ток коллектора (IC), который может быть подан через него без повреждений

Также следует обратить внимание на его максимальную мощность (Pc), температурный диапазон работы и другие характеристики, которые могут быть определены в сопроводительной документации или спецификации

Если вам требуется заменить транзистор 3055, можно использовать аналогичные модели, которые имеют схожие характеристики и параметры. Однако перед заменой всегда рекомендуется проверить и сравнить спецификации и обеспечить, чтобы заменяемый транзистор подходил для конкретного применения.

Как выбрать правильный транзистор 3055 для вашего проекта?

При выборе транзистора 3055 для вашего проекта необходимо обратить внимание на несколько ключевых характеристик:

  • Максимальный ток коллектора (IC) — это максимальный ток, который транзистор может переносить без повреждений. Убедитесь, что выбранный вами транзистор имеет достаточную мощность для вашей нагрузки.
  • Мощность коллектора-эмиттера (PC) — это максимальная мощность, которую транзистор может диссипировать без перегрева. Убедитесь, что мощность транзистора превышает требования вашей схемы.
  • Напряжение коллектора-эмиттера (VCE) — это максимальное напряжение, которому может быть подвержен транзистор. Проверьте, что выбранный вами транзистор подходит для работы с вашим напряжением питания.

Кроме того, важно учитывать и другие характеристики, такие как коэффициент усиления тока (hfe) и скорость переключения. Однако, в большинстве случаев, транзистор 3055 удовлетворяет основным требованиям, связанным с управлением силовыми нагрузками

Если вы не можете найти транзистор 3055 или вам нужны альтернативные варианты, вы можете обратить свое внимание на транзисторы, имеющие схожие характеристики и применение, например:

  • Транзисторы семейства 2N3055 — это транзисторы, которые являются более старыми версиями 3055, но по-прежнему широко используются в силовых приложениях.
  • Транзисторы типа TIP3055 — это другая альтернатива, которая имеет сходные характеристики и может быть легко заменена на транзистор 3055.

Вы всегда можете обратиться к документации производителя или поискать дополнительную информацию в Сети, если вам требуется более детальные сведения о выборе транзистора 3055 или его аналогов. Это позволит вам сделать правильный выбор и обеспечить надежную работу вашей схемы.

Как проверить IRF3205

Это делается, как и с любым другим полевым транзистором с изолированным затвором. Для этого достаточно одного лишь мультиметра.

Перед тем, как проводить проверку рекомендую вам замкнуть все выводы пинцетом между собой, во избежания порчи элемента статическим электричеством (если такое имеется).

Проверка диода

На что нужно обратить внимание первым делом, так это на проверку диода внутри транзистора. Для этого включаем на мультиметре режим прозвонки и прикасаемся красным щупом к контакту истока, а черным к контакту стока. Мультиметр в этом случае должен показывать значение около 400-700

После этого меняем местами щупы — тогда мультиметр должен показывать 1, если мультиметр ограничен индикацией — 1999. Высококлассные мультиметры с ограничением в 4000 будут отображать 2800

Мультиметр в этом случае должен показывать значение около 400-700. После этого меняем местами щупы — тогда мультиметр должен показывать 1, если мультиметр ограничен индикацией — 1999. Высококлассные мультиметры с ограничением в 4000 будут отображать 2800.

Проверка работы транзистора

Из-за того, что в нашем случае элемент оснащен n-каналом, то для его открытия необходимо на затвор, приложить положительный потенциал. Только в таком случае через транзистор начнет проходить ток.

Снова включаем режим прозвонки на мультиметре, отрицательным щупом прикасаемся к истоку, положительный же к стоку.

В случае исправного транзистора, линия исток-сток начнет проводить ток, другими словами транзистор откроется. Чтобы это проверить, нужно прозвонить исток-сток. В случае, если мультиметр показывает какое-либо значение, значит все работает.

После проверки открытия транзистора, необходимо проверить его закрытие. Для этого на затвор нужно приложить отрицательный потенциал. Для этого присоединим отрицательный щуп к затвору, а положительный к истоку.

Снова проверяем сток-исток и тогда все, что должен показать мультиметр — падение на встроенном диоде.

Если все вышеописанные условия выполняются, значит транзистор полностью исправен и его можно использовать в своих проектах.

Как заменить транзистор 3055 в случае неполадок или отсутствия?

Если у вас возникли неполадки с транзистором 3055 или у вас нет возможности приобрести его, вы можете заменить его аналогичным транзистором

В этом случае необходимо обратить внимание на следующие параметры:. 1

Тип корпуса и распиновка: Транзисторы имеют различные типы корпусов (например, TO-220, TO-3) и расположение выводов. Перед выбором аналогичного транзистора убедитесь, что его корпус и распиновка совпадают со старым транзистором

1. Тип корпуса и распиновка: Транзисторы имеют различные типы корпусов (например, TO-220, TO-3) и расположение выводов. Перед выбором аналогичного транзистора убедитесь, что его корпус и распиновка совпадают со старым транзистором.

2. Максимальное значение напряжения и тока: Проверьте максимальное значение напряжения (Vceo) и тока (Ic) транзистора 3055. Выберите аналогичный транзистор с максимальным значением напряжения и тока, которые соответствуют требованиям вашей схемы и приложения.

3. Коэффициент усиления тока (β): Транзисторы имеют различный коэффициент усиления тока (β), который описывает отношение изменения выходного тока к изменению базового тока. Убедитесь, что аналогичный транзистор имеет достаточно высокое значение коэффициента усиления тока для вашей схемы.

4. Мощность транзистора: Проверьте мощность транзистора (Pd), которая указывает на его способность расеивать тепло. Убедитесь, что выбранный аналогичный транзистор способен выдерживать требуемую мощность в вашей схеме.

5. Использование datasheet: Если у вас есть доступ к datasheet нового транзистора, ознакомьтесь с его характеристиками и сравните их с характеристиками транзистора 3055. Это поможет вам выбрать наиболее подходящий аналог.

Обратите внимание, что при замене транзистора необходимо быть внимательным, чтобы избежать ошибок и соответствовать требованиям вашей схемы и приложения. Если вам не хватает опыта в замене транзисторов, рекомендуется обратиться за помощью к профессионалам или к умельцам в данной области

Основные технические характеристики

13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.

Предельные режимы эксплуатации

13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.

Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%

Электрические характеристики

Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.

Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.

Транзистор 3055 vs другие аналоги: что выбрать?

  • Транзистор 2N3055: Это американский аналог транзистора 3055, который имеет аналогичные характеристики и может использоваться вместо него без изменения схемы. Он также широко доступен на рынке и может стать отличной заменой.
  • Транзистор TIP3055: Этот транзистор является одним из наиболее близких аналогов к 3055. Он имеет сходные характеристики и может использоваться вместо него, однако некоторые различия все же могут быть заметны в некоторых схемах.
  • Транзистор MJ15015: Это более мощный аналог транзистора 3055, который может использоваться в схемах с повышенными требованиями к мощности. Он также имеет сходные параметры и может быть хорошей альтернативой 3055.

При выборе аналога транзистора 3055 необходимо учитывать требования вашей схемы, такие как максимальная рабочая мощность, ток коллектора и другие параметры. Лучшим выбором будет тот аналог, который наиболее точно соответствует вашим требованиям и параметрам схемы.

Схемы с использованием TL431

Микросхема может использоваться во многих разных схемах блоков питания. Это могут быть как регулируемые блоки питания, так и зарядные устройства к аккумуляторам. Давайте разберем несколько базовых, типовых схем, которые можно модернизировать, и на базе которых можно создавать свои замыслы и творения.

Стабилизатор напряжения на TL431 (2.5-36В, 100mA)

Данная схема позволяет заменить обыкновенный стабилитрон. Вы можете менять выходное напряжение путем изменения сопротивления резисторов R1 и R2. Чтобы провести расчет сопротивления, рекомендуем прибегнуть к использованию формулы, указанной ниже:

Стабилизатор напряжения с увеличенным максимальным током (2.5-36В)

Максимальный выходной ток TL431 равен 100мА. Однако, если вашему проекту нужен больший показатель выходного тока, то советуем вам использовать транзистор: тогда максимальный ток будет зависеть от его характеристик. Формула для расчета сопротивлений резисторов остается такой же.

Подобные схемы часто используются с другими микросхемами.К сожалению, большинство из них просто не могут пропускать высокий ток, поэтому, чтобы решить такую проблему, в дело вступает управляющий транзистор. В таком случае максимальный ток ограничивается его свойствами. Главная задача здесь — правильный подбор транзистора под управляющее напряжение на его базе.

Лабораторный блок питания на TL431 с защитой

Данная схема представляет собой регулируемый блок питания, который способен выдавать до 30Вт. И помимо этого имеет встроенную защиту от перегрузки. В случае, если ток начнет превышать допустимое значение на транзисторе Т2, то на ЛБП произойдет прекращение подачи напряжения, о чем будет сигнализировать загоревшийся светодиод.

Не стоит забывать использовать охлаждение в виде радиатора, ведь компоненты во время пиковых нагрузок будут быстро нагреваться, и со временем при частых перегревах, выходить из строя.

Стабилизатор тока на TL431 (Светодиодный драйвер)

Чаще всего стабилизаторы тока используются для запитывания светодиодов и светодиодных лент. Схема тут элементарная — вам понадобятся всего лишь пара резисторов и один транзистор.

Индикатор напряжения

Схема может понадобиться, когда вам необходимо следить за тем, чтобы напряжение не выходило за верхние и нижние пределы. Эти пределы задаются сопротивлением резисторов, по формуле, указанной ниже.

Данную схему можно модернизировать путем добавления пищалок или других звуковых устройств. Таким образом точно не получится пропустить сигнал о неправильном напряжении.

Таймер задержки на TL431

Универсальная микросхема, на которой есть возможность реализовать даже схему таймера задержки. Все, что вам понадобится — это пара резисторов и конденсатор. Их номиналы необходимо рассчитать по формуле, чтобы получить требуемое время задержки (формула указана ниже).

Такая схема возможна благодаря очень низкому показателю входного тока (4мкА). Во время замыкания главного контакта, транзистор начинает производить зарядку. После достижения показателя в 2.5В он открывается, и ток при содействии оптопаровому светодиоду (оптрону) начинает течь, от чего на внешней цепи происходит замыкание.

Зарядное устройство для литиевых аккумуляторах на TL431 и LM317

Эта простейшая схема позволяет правильно заряжать литиевые аккумуляторы. В этой зарядке TL431 используется в качестве источника опорного напряжения, а LM317 в качестве источника тока. Устройство заряжает аккумуляторы методом CC CV, означает, как все знают, постоянный ток (Constant Current), постоянное напряжение (Constant Voltage).

Входное напряжение для этой схемы — 9-20В. Сначала аккумулятор заряжается постоянным током, который поддается изменению, меняя сопротивление резистора R5. После того, как аккумулятор достигнет напряжения около 4.2В, он начинает заряжаться постоянным напряжением.

Учтите, что очень важно перед использованием настроить устройство: без нагрузки необходимо подстроить переменный резистор RV1 так, чтобы на выходе напряжение было равно 4.2 Вольта.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: