Система обозначений транзисторов
Встречаются транзисторы (биполярные), которые имеют старую, введенную до 1964 г. систему обозначений. По старой системе в обозначение транзистора входит буква П и цифровой номер.
По номеру транзистора можно определить, для каких каскадов радиоэлектронной конструкции он разработан. Если перед буквой П стоит буква М, то это значит, что корпус транзистора холодносварочной конструкции. Расшифровка типов транзисторов по номеру следующая:
Низкочастотные (до 5 МГц):
- 1…100 — германиевые малой мощности, до 0,25 Вт;
- 101…201 — кремниевые до 0,25 Вт;
- 201…300 — германиевые большой мощности, более 0,25 Вт;
- 301…400 — кремниевые более 0,25 Вт.
Высокочастотные (свыше 5 МГц):
- 401…500 — германиевые до 0,25 Вт;
- 501…600 — кремниевые до 0,25 Вт;
- 601…700 — германиевые более 0,25 Вт;
- 701…800 — кремниевые более 0,25 Вт.
Например:
- П416 Б — транзистор германиевый, высокочастотный, малой мощности, разновидности Б;
- МП39Б — германиевый транзистор, имеющий холодносварочный корпус, низкочастотный, малой мощности, разновидности Б.
В новой системе обозначений используется буквенно-цифровой шифр, который состоит из 5 элементов:
1-й элемент системы обозначает исходный материал, на основе которого изготовлен транзистор и его содержание не отличается от системы обозначения диодов, то есть Г или 1 — германий, К или 2 — кремний, А или 3 — арсенид галлия, И или 4 — индий.
2-1 элемент — буква Т (биполярный) или П (полевой).
3-1 элемент — цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и частотным свойствам.
Транзисторы малой мощности, Рmах < 0,3 Вт:
- 1 — маломощный низкочастотный, Гф< 3 МГц;
- 2 — маломощный среднечастотный, 3 < frp< 30 МГц;
- 3 — маломощный высокочастотный, 30 < fгр< 300 МГц.
Транзисторы средней мощности, 0,3 < Рmах <1,5 Вт:
- 4 — средней мощности низкочастотный;
- 5 — средней мощности среднечастотный;
- 6 — средней мощности высокочастотный.
Транзисторы большой мощности, Рmах >1,5 Вт:
- 7 — большой мощности низкочастотный;
- 8 — большой мощности среднечастотный;
- 9 — большой мощности высокочастотный и сверхвысокочастотный (frp > 300 Гц).
4-й элемент — цифры от 01 до 99, указывающие порядковый номер разработки.
5-й элемент — одна из букв от А до Я, обозначающая деление технологического типа приборов на группы.
Например: КТ540Б — кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.
При изготовлении транзисторов используют различные технологические приемы, в результате чего получаются приборы со специфическими особенностями, эксплуатационными свойствами и параметрами. Цоколевка транзисторов, широко используемых радиолюбителями, дана на рис. 1.
Рис. 1. Цоколевка отечественных транзисторов.
Встречное, параллельное, последовательное соединение стабилитронов
Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.
Параллельное соединение применяется с целью повышения тока и мощности.
Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.
В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.
Модификации и маркировка транзистора S8050
Модель | PC | UCB | UCE | UBE | IC | TJ | fT | Cob | hFE | Корпус | Маркировка |
---|---|---|---|---|---|---|---|---|---|---|---|
S8050A | 0,625 | 40 | 25 | 6 | 0,8 | 150 | 100 | 9 | 85 | TO-92 | — |
GS8050T | 0,625 | 40 | 25 | 6 | 0,8 | 150 | 100 | 9 | 45 | TO-92 | — |
GSTSS8050 | 1 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 85 | TO-92 | — |
MPS8050 | 0,625 | 40 | 25 | 6 | 1,5 | 150 | 190 | 9 | 85 | TO-92 | — |
S8050A/B/C/D/G | 0,625 | 40 | 25 | 6 | 0,8/0,5 | 150 | 100/150 | 9 | 85…300 | TO-92 | — |
S8050T | 0,625 | 40 | 25 | 6 | 0,5 | 150 | 150 | — | 85 | TO-92 | — |
SPS8050 | 0,625 | 15 | 12 | 6,5 | 1,5 | 150 | 260 | 5 | 200 | TO-92 | — |
SS8050/C/D/G | 1 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 85…400 | TO-92 | — |
SS8050T | 1 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 85 | TO-92 | — |
STS8050 | 0,625 | 30 | 25 | 6 | 0,8 | 150 | 120 | 19 | 85 | TO-92 | — |
Транзисторы исполнения SMD и их маркировка | |||||||||||
MMSS8050W-H/J/L | 0,2 | 40 | 25 | 5 | 1,5 | 150 | 100 | 15 | 120…400 | SOT-323 | Y1 |
S8050W | 0,25 | 40 | 25 | 6 | 0,8 | 150 | 100 | 9 | 85 | SOT-323 | Y1 |
SS8050W | 0,2 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 120 | SOT-323 | Y1 |
GSTSS8050LT1 | 0,225 | 40 | 25 | 5 | 1,5 | 150 | 100 | — | 100 | SOT-23 | 1HA |
MMSS8050-L/H | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 120…350 | SOT-23 | Y1 |
MPS8050S | 0,35 | 40 | 25 | 6 | 1,5 | 150 | 190 | — | 85 | SOT-23 | — |
MPS8050SC | 0,35 | 40 | 25 | 5 | 1,2 | 150 | 150 | — | 85…300 | SOT-23 | — |
MS8050-H/L | 0,2 | 40 | 25 | 6 | 0,8 | 150 | 150 | — | 80…300 | SOT-23 | Y11 |
S8050 | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 120 | SOT-23 | — |
S8050M-/B/C/D | 0,45 | 40 | 25 | 6 | 0,8 | 150 | 100 | 9 | 85…300 | SOT-23 | HY3B/C/D |
SS8050LT1 | 0,225 | 40 | 25 | 5 | 1,5 | 150 | 150 | — | 120 | SOT-23 | KEY |
KST8050D | 0,25 | 50 | 50 | 6 | 1,2 | 150 | 100 | — | 100…320 | SOT-23 | Y1C, Y1D |
KST8050M | 0,3 | 40 | 25 | 6 | 0,8 | 150 | 150 | — | 40…400 | SOT-23 | Y11 |
KST8050X | 0,3 | 40 | 20 | 5 | 1,5 | 150 | 100 | 20 | 40…350 | SOT-23 | Y1+ |
KST9013 | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 200…400 | SOT-23 | J3 |
KST9013C | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 40…200 | SOT-23 | J3Y |
S8050LT1 | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 120 | SOT-23 | J3Y |
MMS8050-L/H | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 50…350 | SOT-23 | J3Y |
DMBT8050 | 0,3 | 40 | 25 | 5 | 0,8 | 150 | 100 | — | 120 | SOT-23 | J3Y |
KST8050S | 0,3 | 40 | 25 | 5 | 0,5 | 150 | 150 | — | 50…400 | SOT-23 | J3Y |
KTD1304S | 0,2 | 25 | 20 | 12 | 0,3 | 150 | 50 | 10 | 20…800 | SOT-23 | J3Y |
KTD1304 | 0,2 | 25 | 20 | 12 | 0,3 | 150 | 60 | — | 20…1000 | SOT-23 | J3Y или MAX |
Миниатюрные размеры SMD-корпусов (SOT-23, SOT-323) не позволяют производителю использовать традиционные способы маркировки продукции. Поэтому обычно применяется 2-4 символьный буквенно-цифровой код, наносимый на лицевую поверхность корпуса. Какая-либо единая система среди производителей отсутствует. Кроме того, некоторые предприятия используют одинаковые обозначения, не позволяющие однозначно идентифицировать производителя. Во многих случаях отличающиеся одним символом коды используются и для обозначения групп одного и того же изделия в разных диапазонах значений параметра hFE.
Наиболее часто встречающийся маркировочный код “J3Y” соответствует транзисторам S8050 компаний-производителей: «DC COMPONENTS», «KEXIN», «SECOS», «Jin Yu Semiconductor», «LGE», «WEITRON», «MCC», «GLOBALTECH Semiconductor», «Shenzhen Tuofeng Semiconductor Technologies».
Таблица 1 – Краткие технические характеристики транзисторов КТ361, КТ361-1, КТ361-2 и КТ361-3
Тип | Структура | PК max, мВт |
fгр, МГц |
UКЭmax, В |
IК max, мА |
h21Э | CК, пФ |
rКЭ нас, Ом |
rб, Ом |
3D мод. 1 |
3D мод. 2 |
3D мод. 3 |
Библиотека Altium Designer |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Примечание:
1. IК max – максимально допустимый постоянный ток коллектора;
2. UКЭ max – пробивное напряжение коллектор-эмиттер при заданном токе коллектора и заданном (конечном) сопротивлении в цепи база-эмиттер;
3. PК max – максимально допустимая постоянная рассеиваемая мощность коллектора;
4. rб – сопротивление базы;
5. rКЭ нас – сопротивление насыщения между коллектором и эмиттером;
6. CК – емкость коллекторного перехода , измеренная при UК = 10 В;
7. fгp – граничная частота коэффициента передачи тока транзистора для схемы общим эмиттером;
8. h2lЭ – статический коэффициент передачи тока для схемы с общим эмиттером в режиме большого сигнала.
Практика работы составного транзистора
На рис. 3 показаны три варианта построения выходного каскада (эмиттерный повторитель). При подборе транзисторов надо стремится к b1~b2 и b3~b4 . Различие можно компенсировать за счёт подбора пар по равенству коэффициентов усиления СТ b13~b24 (см. табл. 1).
- Схема на рис. 3а имеет наибольшее входное сопротивление, но это худшая из приведённых схем: требует изоляцию фланцев мощных транзисторов (или раздельные радиаторы) и обеспечивает наименьший размах напряжения, поскольку между базами СТ должно падать ~2 В, в противном случае сильно проявятся искажения типа «ступенька».
- Схема на рис. 3б досталась в наследство с тех времён, когда ещё не выпускались комплементарные пары мощных транзисторов. Единственный плюс по сравнению с предыдущим вариантом – меньшее падение напряжения ~1,8 В и больше размах без искажений.
- Схема на рис. 3в наглядно демонстрирует преимущества СТШ: между базами СТ падает минимум напряжения, а мощные транзисторы можно посадить на общий радиатор без изоляционных прокладок.
На рис. 4 показаны два параметрических стабилизатора. Выходное напряжение для варианта с СТД равно:
Поскольку Uбэ гуляет в зависимости от температуры и коллекторного тока, то у схемы с СТД разброс выходного напряжения будет больше, а потому вариант с СТШ предпочтительней.
Рис. 3. Варианты выходных эмиттерных повторителей на СТ
Рис. 4. Применение СТ в качестве регулятора в линейном стабилизаторе
Для коммутации электромеханических приводов и, тем более, в импульсных схемах следует использовать готовые СТ с нормированными параметрами включения и выключения, паразитными ёмкостями. Типичный пример – широко распространённые импортные комплементарные СТД серии TIP12х.
Как отличить стабилизационный диод от обычного полупроводника
Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции. Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В). Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:
Схема приставки мультиметра
В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В. При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение. При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.
Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43
При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой. Проводя настройку прибора, подключите резистор вместо smd VDX
Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4 Вот так можно выяснить, стабилитрон у вас или обычный диод
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4 Вот так можно выяснить, стабилитрон у вас или обычный диод.
Принцип работы биполярного транзистора.
Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника
в кристалле. В любом случае выводы называются — база, коллектор и эмиттер.
Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора.
Он имеет принципиально очень малую ширину.
Носители заряда движутся от эмиттера через базу — к коллектору.
Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей
в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого
может являться разность напряжения между этими электродами.
Т.е. — для нормальной работы биполярного транзистора в качестве усилителя сигнала
всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в
прямом направлении.
Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает
так называемую — рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют
режим — А. В этом режиме напряжение между коллектором
и нагрузкой, примерно равно половине питающего напряжения — т. е выходное сопротивление транзистора
и нагрузки примерно равны . Если подавать теперь на переход база — эмиттер
сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер — коллектор будет изменяться, графически повторяя
форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору
протекающим. Причем амплитуда тока будет большей, нежели амплитуда
входного сигнала — будет происходить усиление сигнала.
Если увеличивать напряжение смещения база — эмиттер дальше, это приведет к росту
тока в этой цепи, и как результат — еще большему росту тока эмиттер — коллектор.
В конце, концов ток перестает расти — транзистор переходит в полностью открытое
состояние(насыщения). Если затем убрать напряжение смещения — транзистор закроется,
ток эмиттер — коллектор уменьшится, почти исчезнет. Так транзистор может работать
в качестве электронного ключа. Этот режим наиболее эффективен в отношении
управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения
минимальна. Соответственно малы потери тока и нагрев переходов транзистора.
Существует три вида подключения биполярного транзистора.
С общим эмиттером (ОЭ) — осуществляется усиление как по току, так и по напряжению — наиболее
часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой,
так как значения их входного и выходного сопротивления относительно близки, если
сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).
С общим коллектором (ОК) осуществляется усиление только по току — применяется для согласования
источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок.
Например, в выходных каскадах усилителей и контроллеров.
С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое
выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования
источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом
усиления. Например — в входных цепях радиоприемных устройств.
Маркировка биполярный SMD транзисторов
Обозначение на корпусе | Тип транзистора | Условный аналог |
15 | MMBT3960 | 2N3960 |
1A | BC846A | BC546A |
1B | BC846B | BC546B |
1C | MMBTA20 | MPSA20 |
1D | BC846 | — |
1E | BC847A | BC547A |
1F | BC847B | BC547B |
1G | BC847C | BC547C |
1H | BC847 | — |
1J | BC848A | BC548A |
1K | BC848B | BC548B |
1L | BC848C | BC548C |
1M | BC848 | — |
1P | FMMT2222A | 2N2222A |
1T | MMBT3960A | 2N3960A |
1X | MMBT930 | — |
1Y | MMBT3903 | 2N3903 |
2A | FMMT3906 | 2N3906 |
2B | BC849B | BC549B |
2C | BC849C | BC549C / BC109C / MMBTA70 |
2E | FMMTA93 | — |
2F | BC850B | BC550B |
2G | BC850C | BC550C |
2J | MMBT3640 | 2N3640 |
2K | MMBT8598 | — |
2M | MMBT404 | — |
2N | MMBT404A | — |
2T | MMBT4403 | 2N4403 |
2W | MMBT8599 | — |
2X | MMBT4401 | 2N4401 |
3A | BC856A | BC556A |
3B | BC856B | BC556B |
3D | BC856 | — |
3E | BC857A | BC557A |
3F | BC857B | BC557B |
3G | BC857C | BC557C |
3J | BC858A | BC558A |
3K | BC858B | BC558B |
3L | BC858C | BC558C |
3S | MMBT5551 | — |
4A | BC859A | BC559A |
4B | BC859B | BC559B |
4C | BC859C | BC559C |
4E | BC860A | BC560A |
4F | BC860B | BC560B |
4G | BC860C | BC560C |
4J | FMMT38A | — |
449 | FMMT449 | — |
489 | FMMT489 | — |
491 | FMMT491 | — |
493 | FMMT493 | — |
5A | BC807-16 | BC327-16 |
5B | BC807-25 | BC327-25 |
5C | BC807-40 | BC327-40 |
5E | BC808-16 | BC328-16 |
5F | BC808-25 | BC328-25 |
5G | BC808-40 | BC328-40 |
549 | FMMT549 | — |
589 | FMMT589 | — |
591 | FMMT591 | — |
593 | FMMT593 | — |
6A | BC817-16 | BC337-16 |
6B | BC817-25 | BC337-25 |
6C | BC817-40 | BC337-40 |
6E | BC818-16 | BC338-16 |
6F | BC818-25 | BC338-25 |
6G | BC818-40 | BC338-40 |
9 | BC849BLT1 | — |
AA | BCW60A | BC636 / BCW60A |
AB | BCW60B | — |
AC | BCW60C | BC548B |
AD | BCW60D | — |
AE | BCX52 | — |
AG | BCX70G | — |
AH | BCX70H | — |
AJ | BCX70J | — |
AK | BCX70K | — |
AL | MMBTA55 | — |
AM | BSS64 | 2N3638 |
AS1 | BST50 | BSR50 |
B2 | BSV52 | 2N2369A |
BA | BCW61A | BC635 |
BB | BCW61B | — |
BC | BCW61C | — |
BD | BCW61D | — |
BE | BCX55 | — |
BG | BCX71G | — |
BH | BCX71H | BC639 |
BJ | BCX71J | — |
BK | BCX71K | — |
BN | MMBT3638A | 2N3638A |
BR2 | BSR31 | 2N4031 |
C1 | BCW29 | — |
C2 | BCW30 | BC178B / BC558B |
C5 | MMBA811C5 | — |
C6 | MMBA811C6 | — |
C7 | BCF29 | — |
C8 | BCF30 | — |
CE | BSS79B | — |
CEC | BC869 | BC369 |
CF | BSS79C | — |
CH | BSS82B / BSS80B | — |
CJ | BSS80C | — |
CM | BSS82C | — |
D1 | BCW31 | BC108A / BC548A |
D2 | BCW32 | BC108A / BC548A |
D3 | BCW33 | BC108C / BC548C |
D6 | MMBC1622D6 | — |
D7 | BCF32 | — |
D8 | BCF33 | BC549C / BCY58 / MMBC1622D8 |
DA | BCW67A | — |
DB | BCW67B | — |
DC | BCW67C | — |
DE | BFN18 | — |
DF | BCW68F | — |
DG | BCW68G | — |
DH | BCW68H | — |
E1 | BFS17 | BFY90 / BFW92 |
EA | BCW65A | — |
EB | BCW65B | — |
EC | BCW65C | — |
ED | BCW65C | — |
EF | BCW66F | — |
EG | BCW66G | — |
EH | BCW66H | — |
F1 | MMBC1009F1 | — |
F3 | MMBC1009F3 | — |
FA | BFQ17 | BFW16A |
FD | BCV26 | MPSA64 |
FE | BCV46 | MPSA77 |
FF | BCV27 | MPSA14 |
FG | BCV47 | MPSA27 |
GF | BFR92P | — |
H1 | BCW69 | — |
H2 | BCW70 | BC557B |
H3 | BCW89 | — |
H7 | BCF70 | — |
K1 | BCW71 | BC547A |
K2 | BCW72 | BC547B |
K3 | BCW81 | — |
K4 | BCW71R | — |
K7 | BCV71 | — |
K8 | BCV72 | — |
K9 | BCF81 | — |
L1 | BSS65 | — |
L2 | BSS70 | — |
L3 | MMBC1323L3 | — |
L4 | MMBC1623L4 | — |
L5 | MMBC1623L5 | — |
L6 | MMBC1623L6 | — |
L7 | MMBC1623L7 | — |
M3 | MMBA812M3 | — |
M4 | MMBA812M4 | — |
M5 | MMBA812M5 | — |
M6 | BSR58 / MMBA812M6 | 2N4858 |
M7 | MMBA812M7 | — |
O2 | BST82 | — |
P1 | BFR92 | BFR90 |
P2 | BFR92A | BFR90 |
P5 | FMMT2369A | 2N2369A |
Q3 | MMBC1321Q3 | — |
Q4 | MMBC1321Q4 | — |
Q5 | MMBC1321Q5 | — |
R1 | BFR93 | BFR91 |
R2 | BFR93A | BFR91 |
S1A | SMBT3904 | — |
S1D | SMBTA42 | — |
S2 | MMBA813S2 | — |
S2A | SMBT3906 | — |
S2D | SMBTA92 | — |
S2F | SMBT2907A | — |
S3 | MMBA813S3 | — |
S4 | MMBA813S4 | — |
T1 | BCX17 | BC327 |
T2 | BCX18 | — |
T7 | BSR15 | 2N2907A |
T8 | BSR16 | 2N2907A |
U1 | BCX19 | BC337 |
U2 | BCX20 | — |
U7 | BSR13 | 2N2222A |
U8 | BSR14 | 2N2222A |
U9 | BSR17 | — |
U92 | BSR17A | 2N3904 |
Z2V | FMMTA64 | — |
ZD | MMBT4125 | 2N4125 |
Мощность рассеивания стабилитрона
Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:
Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.
Маркировка импортных smd
Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.
Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.
Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.
Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.
Создание устройства
Разработчики полупроводников часто совмещают взаимоисключающие идеи. Например, задают уменьшенные размеры и увеличенные скорости при жестких требованиях к прочности и стабильности системы, расширяют функционал при минимальных системных изменениях, стараются соблюсти баланс между высоким качеством и наименьшими затратами. Все это сочетается в самом распространенном корпусе транзистора SOT23.
Но мгновенного успеха не бывает. К тому же, поверхностный монтаж был, по большому счету, не актуален до 1990-х годов, когда потребительская электроника стала использоваться повсюду. Именно рассматриваемый корпус в те годы был взят за стандарт 3-выводных корпусов поверхностного монтажа. Сегодня почти всю электронику выпускают именно по этой технологии. Корпуса, которые устанавливают в отверстие, популярны. Чаще всего они применяются в разработке макетов и продукции.
Более современные варианты
Корпус SOT23 оставался внешне неизменным в течение нескольких десятков лет, на самом деле, он серьезно совершенствовался:
12 недорогих наборов электроники для самостоятельной сборки и пайки
Моя личная подборка конструкторов с Aliexpress «сделай сам» для пайки от простых за 153 до 2500 рублей. Дочке 5 лет — надо приучать к паяльнику))) — пусть пока хотя-бы смотрит — переходи посмотреть, один светодиодный куб чего только стоит
- был добавлен 5-контактный вариант;
- появилась бессвинцовая версия;
- был расширен спектр допустимых температур до 175 градусов.
Сегодня устройство также развивается. Когда понадобилась более высокая плотность монтажа, появилось много “потомков” устройства. Самые популярные из них — SOT223 и SOT323. Взгляните на какой угодно корпус типа SOT для монтажа на поверхности, и заметите очень много общего с SOT23.
Так как эффективность и качество постоянно должны повышаться, появляются технологические инновации. Они актуальны для выпуска и сборки приборов для монтажа на поверхности — smd. Новые способы и линии производства отвечают постоянно растущему спросу на SOT23 и “дочерние” приборы.
Виды записи
Производители транзисторов применяют два основных типа шифрования – это цветовая и кодовая маркировки. Однако ни один, ни другой не имеют единых стандартов. Каждый завод, производящий полупроводниковые приборы (транзисторы, диоды, стабилитроны и т. д.), принимает свои кодовые и цветовые обозначения. Можно встретить транзисторы одной группы и типа, изготовленные разными заводами, и маркированы они будут по-разному. Или наоборот: элементы будут различными, а обозначения на них – идентичными. В таких случаях различать их можно только по дополнительным признакам. Например, по длине выводов эмиттера и коллектора либо по окраске противоположной (или торцевой) поверхности. Маркировка полевых транзисторов ничем не отличается от меток на других приборах. Такая же ситуация и с полупроводниковыми элементами зарубежного производства: каждым заводом-изготовителем применяются свои типы обозначений.
Подведем итог
Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы.
МОП-транзистор:
- Высокая частота переключения.
- Лучшие динамические параметры и более низкое энергопотребление драйвера.
- Более низкая емкость затвора.
- Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
- Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.
IGBT модуль:
- Улучшенная технология производства, которая приводит к снижению затрат.
- Лучшая устойчивость к перегрузкам.
- Улучшенная способность распараллеливания схемы.
- Более быстрое и плавное включение и выключение.
- Снижение потерь при включении и при переключении.
- Снижение входной мощности.
В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.