BC327 Datasheet (PDF)
BC327-xBK / BC328-xBK BC327-xBK / BC328-xBK General Purpose Si-Epitaxial Planar Transistors PNP PNP Si-Epitaxial Planar-Transistoren für universellen Einsatz Version 2010-06-23 ±0.1 Power dissipation 625 mW 4.6 Verlustleistung Plastic case TO-92 Kunststoffgehäuse (10D3) Weight approx. – Gewicht ca. 0.18 g Plastic material has UL classification 94V-0 C B E Gehäusematerial UL9
1.2. bc327 bc328.pdf Size:160K _motorola
MOTOROLA Order this document SEMICONDUCTOR TECHNICAL DATA by BC327/D Amplifier Transistors PNP Silicon BC327,-16,-25 BC328,-16,-25 COLLECTOR 1 2 BASE 3 EMITTER 1 MAXIMUM RATINGS 2 3 Rating Symbol BC327 BC328 Unit CASE 29�04, STYLE 17 Collector�Emitter Voltage VCEO �45 �25 Vdc TO�92 (TO�226AA) Collector�Base Voltage VCBO �50 �30 Vdc Emitter�Base Voltage VEBO �5.0 Vdc Collect
1.3. bc327 3.pdf Size:52K _philips
DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 BC327 PNP general purpose transistor 1999 Apr 15 Product specification Supersedes data of 1997 Mar 10 Philips Semiconductors Product specification PNP general purpose transistor BC327 FEATURES PINNING � High current (max. 500 mA) PIN DESCRIPTION � Low voltage (max. 45 V). 1 emitter 2 base APPLICATIONS 3 collector � Genera
BC807; BC807W; BC327 45 V, 500 mA PNP general-purpose transistors Rev. 06 � 17 November 2009 Product data sheet 1. Product profile 1.1 General description PNP general-purpose transistors. Table 1. Product overview Type number Package NPN complement NXP JEITA BC807 SOT23 — BC817 BC807W SOT323 SC-70 BC817W BC327 SOT54 (TO-92) SC-43A BC337 Also available in SOT54A and SOT54 variant
BC327-25 BC327-40 � SMALL SIGNAL PNP TRANSISTORS PRELIMINARY DATA Ordering Code Marking Package / Shipment BC327-25 BC327-25 TO-92 / Bulk BC327-25-AP BC327-25 TO-92 / Ammopack BC327-40 BC327-40 TO-92 / Bulk BC327-40-AP BC327-40 TO-92 / Ammopack SILICON EPITAXIAL PLANAR PNP TRANSISTORS TO-92 PACKAGE SUITABLE FOR THROUGH-HOLE PCB ASSEMBLY TO-92 TO-92 THE NPN COMPLEMENTARY TYPES ARE
1.6. bc327 bc328.pdf Size:49K _fairchild_semi
BC327/328 Switching and Amplifier Applications � Suitable for AF-Driver stages and low power output stages � Complement to BC337/BC338 TO-92 1 1. Collector 2. Base 3. Emitter PNP Epitaxial Silicon Transistor Absolute Maximum Ratings Ta=25�C unless otherwise noted Symbol Parameter Value Units VCES Collector-Emitter Voltage : BC327 -50 V : BC328 -30 V VCEO Collector-Emitter Voltage :
BC327-16/25/40 MCC TM Micro Commercial Components BC328-16/25/40 20736 Marilla Street Chatsworth Micro Commercial Components CA 91311 Phone: (818) 701-4933 Fax: (818) 701-4939 Features PNP � Lead Free Finish/RoHS Compliant («P» Suffix designates RoHS Compliant. See ordering information) Plastic-Encapsulate � Capable of 0.625Watts of Power Dissipation. � Collector-current : -0.8
BC327, BC327-16, BC327-25, BC327-40 Amplifier Transistors PNP Silicon http://onsemi.com Features � Pb-Free Packages are Available* COLLECTOR 1 MAXIMUM RATINGS 2 BASE Rating Symbol Value Unit Collector -Emitter Voltage VCEO -45 Vdc 3 Collector -Base Voltage VCES -50 Vdc EMITTER Collector -Emitter Voltage VEBO -5.0 Vdc Collector Current — Continuous IC -800 mAdc Total Power Dissip
SBC327 Semiconductor Semiconductor PNP Silicon Transistor Descriptions • High current application • Switching application Features • Suitable for AF-Driver stage and low power output stages • Complementary Pair with SBC337 Ordering Information Type NO. Marking Package Code0 SBC327 SBC327 TO-92 Outline Dimensions unit : mm 3.45±0.1 4.5±0.1 2.25±0.1 0.4±0.02 2.06±0
C5027F-0 Транзисторы FAIRCHILD — Veswin Electronics
Электронный компонент C5027F-0 запущен в производство компанией FAIRCHILD, входящей в состав Transistors.
- Категории
- Транзисторы
- Производитель
- Фэирчайлд Полупроводник
- Номер детали Весвин
- В1070-К5027Ф-0
- Статус без содержания свинца / Статус RoHS
- Без свинца / Соответствует RoHS
- Состояние
- Новое и оригинальное — заводская упаковка
- Состояние на складе
- Запасы на складе
- Минимальный заказ
- 1
- Расчетное время доставки
- 25–30 мая (выберите ускоренную доставку)
- Модели EDA/CAD
- C5027F-0 от SnapEDA
- Условия хранения
- Сухой шкаф и пакет защиты от влаги
Ищете C5027F-0? Добро пожаловать на Veswin.
- Q: Как заказать C5027F-0?
- О: Нажмите кнопку «Добавить в корзину» и перейдите к оформлению заказа.
- В: Как оплатить C5027F-0?
- A: Мы принимаем T/T (банковский перевод), Paypal, оплату кредитной картой через PayPal.
- В: Как долго я могу получить C5027F-0?
-
О: мы отправим через FedEx, DHL или UPS, обычно доставка в ваш офис занимает 4 или 5 дней.
Мы также можем отправить заказной авиапочтой. Обычно доставка в ваш офис занимает 14-38 дней.
Пожалуйста, выберите предпочтительный способ доставки при оформлении заказа на нашем сайте. - В: C5027F-0 Гарантия?
- A: Мы предоставляем 90-дневную гарантию на наш продукт.
- В: Техническая поддержка C5027F-0?
-
A: Да, наш технический инженер по продуктам поможет вам с информацией о распиновке C5027F-0, примечаниями по применению, заменой,
техническое описание в формате pdf, руководство, схема, аналог, перекрестная ссылка.
ОБЕСПЕЧЕНИЕ КАЧЕСТВА VESWIN ELECTRONICS
Регистратор систем качества, сертифицированный Veswin Electronics по стандартам ISO 9001. Наши системы и соответствие стандартам регулярно пересматривались и тестировались для поддержания постоянного соответствия.
СЕРТИФИКАЦИЯ ИСО
Как выбрать аналоги транзистора BC327
При замене транзистора BC327 необходимо учитывать его характеристики и особенности работы. Подобрать подходящий аналог позволит ряд факторов, таких как максимальное рабочее напряжение, коллекторный ток, коэффициент усиления и максимальная мощность.
Для выбора аналога транзистора BC327 можно обратиться к каталогам производителей электронных компонентов или воспользоваться специализированными онлайн-сервисами. Каталоги содержат информацию о характеристиках различных транзисторов, что поможет подобрать аналог с нужными параметрами.
При выборе аналога следует обратить внимание на параметры:
- Максимальное рабочее напряжение: подбирайте аналог с таким же или большим значением, чтобы не превышать граничные значения транзистора BC327.
- Коллекторный ток: аналог должен иметь токовую характеристику, близкую к BC327 или большую, чтобы обеспечить надежную работу схемы.
- Коэффициент усиления: выбирайте аналог с таким же или близким значением коэффициента усиления, чтобы сохранить работоспособность схемы.
- Максимальная мощность: аналог должен иметь такую же или большую мощность, чтобы обеспечить надежную и безопасную работу.
Перед выбором аналога рекомендуется также обратить внимание на работу схемы и контекст использования транзистора BC327. Например, возможно, что более надежно будет заменить его несколькими транзисторами другого типа или использовать специализированные решения
Необходимо также учитывать, что выбранный аналог должен быть доступен на рынке и иметь подходящую цену. При выборе аналога рекомендуется обратиться к производителям электронных компонентов и консультироваться с опытными специалистами, чтобы выбрать наиболее подходящий вариант для конкретного проекта или испытания.
Проверка КТ815
Не всегда покупаемые элементы оказываются в рабочем состоянии. Пусть бракованные элементы попадаются не так часто, но любой радиолюбитель или просто покупатель обязан знать, как проверить такой прибор.
Во-первых, проверить работоспособность КТ815 можно специальным пробником, но рассмотрим проверку обычным мультиметром, так как предыдущий прибор есть далеко не у всех.
Для проверки при помощи мультиметра, прибор нужно перевести в режим прозвонки. Сначала прикладываем отрицательный щуп к базе, а положительный к коллектору. На дисплее должно отобразиться значение от 500 до 800 мв. Затем меняем щупы, поставив на базу положительный, а на эмиттер отрицательный. Значения должны примерно равны прошлым.
Затем нужно проверить обратное падение напряжение. Для этого поставим сначала отрицательный щуп на базу, а положительный на коллектор. Должны получится единица. В случае с замером на базе и эмиттере, произойдёт то же самое.
Технические характеристики
Транзисторы КТ361 распределены по параметрам группам усиления и отличаются между собой преимущественно такими основными характеристиками: максимальное постоянное напряжения между выводами К-Э, К-Б (при RБЭ=10 кОм) от 20 до 50 В; статическим коэффициентом передачи тока (H21Э) от 20 до 350. При этом разброс возможного H21Э, даже в одинаково промаркированных устройствах, может значительно варьироваться. У них также разные напряжения между К-Э от 10 до 60 В, при обратном токе К-Э не более 1 мА. Другие значения параметров похожие и являются типовыми для всего семейства.
Предельно допустимые
Рассмотрим предельно допустимые параметры, характерные для серии КТ361:
- напряжение между выводами Б-Э до 4В;
- ток коллектора до 50мА;
- мощность рассеивания: 150мВт, если Т>+100оС до 30мВт;
- температуры: кристалла до 120 оС; окружающей среды – 60…+100 оС;
- статический потенциал до 200 В.
При повышении нагрева устройства свыше +100 оС отдельные параметры ухудшаются. Особенно это сильно влияет на мощность рассеивания.
Типовые электрические
К типовым электрическим параметрам у КТ361 относятся:
- граничная частота по H21Э (если UKЭ=10 В и IЭ=5 мА) более 250 МГц;
- обратные токи: между К-Э (при RБЭ=10 кОм и максимальном UKЭ) до 1 мкА; коллектора (при UKБ=10В) до 1 мкА;
- возможная емкость перехода на коллекторе-7..9 пФ;
- статический коэффициент усиления H21Э от 20 до 350.
Исходя из вышесказанного, КТ361 можно отнести к высокочастотным полупроводниковым триодам p-n-p-структуры малой мощности. В таблице представлены основные значения наиболее распространенных его групп.
Особенности работы
Из-за специфичной эпитаксиально-планарной технологии изготовления, КТ361 получился не столь хорош, как его «старший брат» КТ315. К основным его недостаткам можно отнести:
- большой разброс значений H21Э;
- в два раза меньший предельно допустимый коллекторный ток;
- внезапно появляющиеся/пропадающие шумы.
Вместе эти транзисторы выгодней использовать при IК в районе 20…30 мА, в этот момент H21Э у них самый высокий. Но при одинаковых условиях и режимах эксплуатации КТ 361 выходит из строя быстрее. Как следствие альтернативу ему приходится искать чаще. Но многое зависит от схемы и её назначения.
Аналоги
Импортные аналоги для кт361 обычно подбирают из следующих устройств: BC556, 2N3905, BC557, BC308A, BC327, SS9012, 2N3906, Из отечественных в качестве замены можно рассмотреть: КТ3107, КТ502. В SMD-корпусе импортные ВС857, ВС858 и российский или белорусский КТ3129.
Маркировка
Первоначальная кодовая маркировка пластиковой упаковки КТ-13 состояла всего из одного символа, размещенного прямо по центру. Она могла запутать многих радиолюбителей, так как в начальный период производства (с 1967 г.) уже были похожие изделия в аналогичном исполнении, но с другими параметрами.
Поэтому с 1971г. обозначение группы коэффициента усиления по току у КТ361, состоящее всего из одной буквы, стали наносить посередине корпуса. Чуть ниже — дату выпуска. Данный транзистор легко отличить от КТ315, групповая принадлежность которого указана в левом верхнем углу на пластике. Таким образом, производители продолжают делать и сейчас.
Транзисторы в корпусе КТ-26 имеют полную цифро-буквенную маркировку и их идентификация обычно не вызывает трудностей.
Маркировка полевых SMD транзисторов
Маркировка | Тип прибора | Маркировка | Тип прибора |
6A | MMBF4416 | C92 | SST4392 |
6B | MMBF5484 | C93 | SST4393 |
6C | MMBFU310 | H16 | SST4416 |
6D | MMBF5457 | I08 | SST108 |
6E | MMBF5460 | I09 | SST109 |
6F | MMBF4860 | I10 | SST110 |
6G | MMBF4393 | M4 | BSR56 |
6H | MMBF5486 | M5 | BSR57 |
6J | MMBF4391 | M6 | BSR58 |
6K | MMBF4932 | P01 | SST201 |
6L | MMBF5459 | P02 | SST202 |
6T | MMBFJ310 | P03 | SST203 |
6W | MMBFJ175 | P04 | SST204 |
6Y | MMBFJ177 | S14 | SST5114 |
B08 | SST6908 | S15 | SST5115 |
B09 | SST6909 | S16 | SST5116 |
B10 | SST6910 | S70 | SST270 |
C11 | SST111 | S71 | SST271 |
C12 | SST112 | S74 | SST174 |
C13 | SST113 | S75 | SST175 |
C41 | SST4091 | S76 | SST176 |
C42 | SST4092 | S77 | SST177 |
C43 | SST4093 | TV | MMBF112 |
C59 | SST4859 | Z08 | SST308 |
C60 | SST4860 | Z09 | SST309 |
C61 | SST4861 | Z10 | SST310 |
C91 | SST4391 |
Характеристики биполярного транзистора.
Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач. И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:
I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const
В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):
Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.
Переходим ко второй крайне важной характеристике биполярного транзистора — выходной. Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы
I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const
Для нее также указывается семейство характеристик для разных значений тока базы:
Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .
Для наглядности можно изобразить эти режимы на семействе выходных характеристик:
Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.
Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано.
Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:
I_к = \beta I_б
Двигаемся дальше
На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.
В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.
Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора.
И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.
Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:
Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды. Разным значениям температуры соответствуют разные кривые.
Замена импортных транзисторов отечественными
Аналоги и возможные замены | |||
Тип | Аналог | Возможная замена | Примечания |
MJEF34 | КТ816 | Любой мощный рпр-транзистор с максимальным током коллектора большим 3 А | |
TIP42 | КТ816 | ||
2SK58 | КПС315А, Б | ||
2N5911 | Обычные ПТ | ||
U441 | КП303Д, Е; КП307Г, Д;КПЗ12; КП323;КП329; КП341;КП364Д, Е | ||
U444 | КП303Д, Е; КП307Г, Д;КП312; КП323,КП329; КП341;КП364Д, Е | ||
MPF102 | КП303Д, Е | В этой схеме можно применить любой высокочастотный полевой транзистор с каналом ri-типа и изоляцией рп-переходом. При наладке схемы может понадобиться подобрать резисторы в цепях затворов и/или истоков. Предпочтение следует отдавать транзисторам с наибольшим и начальными токами стока, малым пороговым напряжением и уровнем шума на ВЧ | |
MPS3866 | КТ368 | В этой схеме можно применить любой высокочастотный биполярный прп-транзистор. Предпочтение следует отдавать транзисторам с малым уровнем шума на ВЧ | |
25139 | КП327А,В | КП346А-9; КП382А | |
1N754 | КС162 | ||
1N757A | КС182 | ||
2N3563 | КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е | ||
2N3565 | КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е | ||
2N3569 | КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е | ||
BFR90 | КТ3198А | КТ371А, КТ3190А | |
MPS3866 | КТ939А | ||
MRF557 | КТ948; КТ996Б-2;КТ9141; КТ9143;КТ919; КТ938 | ||
MRF837 | КТ634; КТ640; КТ657Б-2 | ||
MV2101 | KB102; KB107А,В | ||
2N4401 | КТ6103 | КТ504 | |
2N4403 | КТ6102, КТ6116 | КТ505 | |
ВС547В | КТ3102 | ||
ВС549С | КТ3102 | ||
ВС557В | KТ3107 | ||
BD139 | КТ815 | ||
BD140 | КТ814 | ||
2N5771 | КТ363АМ | ||
ВС548 | КТ3102 | ||
ВС557 | КТ3107 | ||
TIP111 | КТ716 | ||
TIP116 | КТ852 | ||
TIP33B | КТ865 | ||
TIP34B | КТ864 | ||
2SC2092 | КТ981, КТ955А,КТ9166А, КТ9120 | ||
MRF475 | КТ981, КТ955А,КТ9166А, КТ9120 | ||
40673 | КП350, КП306,КП327, КП347,КП382 | ||
2N4124 | КТ3102Д | ||
J309 | КП303Д, Е; КП307Г, Д;КПЗ12, КП323;КП329; КП341;КП364Д, Е | ||
MPS2907 | КТ313 | ||
2N3414 | КТ645 | ||
2N4403 | КТ6102, КТ6116 | КТ505 | |
3055Т | КТ8150А | ||
ВС517 | КТ972 | ||
IRF9Z30 | КП944 | ||
TIP125 | КТ853, КТ8115 | ||
BS250P | КП944 | ||
2N3391A | КТ3102 | Любые маломощные с большим h2fe | |
BC184L | КТ3102 | Любые маломощные с большим h2fe | |
ВС547В | КТ3102 | ||
BUZ11 | КП150 | ||
IRFL9110 | КП944 | ||
2N4401 | КТ6103, КТ6117 | КТ504 | |
2N4403 | КТ6102, КТ6116 | КТ505 | |
ВС109С | КТ342 | ||
ВС237 | КТ3102 | ||
ВС547 | КТЗ102, КТ645А | ||
2N4401 | КТ6103, КТ6117 | КТ504 | |
2N4403 | КТ6102, КТ6116 | КТ505 | |
MPS А18 | КТ342Б, Д | ||
2N3704 | КТ685 | ||
2N4393 | КП302ГМ | ||
2N5401 | КТ6116А | ||
ВС487 | КТ342Б, Д; КТ630Е | ||
IRFZ44 | КП723А | ||
MPS2907 | КТ313 | КТ3107 | |
MPSА14 | КТ685 | ||
MPSA64 | КТ973 | ||
2N2222 | КТ3117Б | КТ315 | |
2N3904 | КТ6137А | КТ815 | |
2N3906 | КТ6136А | ||
ECG-187 | ГТ906А | ||
FPT-100 | фототранзистор | ||
HRF-511 | КП904 | ||
TIL 414 | фототранзистор |
Нужно заменить диод или стабилитрон? — аналоги и замены диодов и полупроводников.
Разборка транзистора BC327
Перед началом разборки транзистора BC327 необходимо убедиться, что все источники питания и подключенные компоненты отключены. Это не только гарантирует безопасность, но и предотвращает повреждение самого транзистора при его разборке.
Шаги для разборки транзистора BC327:
Используйте пинцет или ножницы для снятия наружной оболочки транзистора. Постарайтесь не повредить внутренние компоненты, такие как контакты и проводники.
Отсоедините выводы транзистора от платы или других компонентов, используя пайку и паяльник. Убедитесь, что все соединения полностью остыли перед тем, как продолжить разборку.
Осмотрите внутренние компоненты транзистора, чтобы проверить их состояние
Обратите внимание на повреждения, трещины или другие видимые дефекты, которые могут указывать на неисправность транзистора.
При необходимости замените поврежденные компоненты транзистора с помощью пайки
Убедитесь, что все компоненты правильно подключены и надежно закреплены.
Подготовьте внешнюю оболочку транзистора для его сборки
Убедитесь, что все части находятся на своих местах и правильно совмещены между собой.
Осторожно и аккуратно соберите транзистор BC327, вставив внутренние компоненты в оболочку и закрепив ее на месте. Обратите внимание на правильную ориентацию выводов транзистора.
После сборки транзистора BC327 убедитесь, что все соединения надежно закреплены и готовы к использованию
Проверьте его работоспособность, подключив его к соответствующим источникам питания.
Завершив разборку транзистора BC327, необходимо утилизировать все отходы соответствующим образом и соблюдать меры предосторожности при работе с электронными компонентами