Регулятор мощности на симисторе
Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.
Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.
- Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
- R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
- R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
- C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
- VD3 — динистор, открытие которого управляет симистором.
- VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.
Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.
Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.
Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.
Проверка КТ815
Не всегда покупаемые элементы оказываются в рабочем состоянии. Пусть бракованные элементы попадаются не так часто, но любой радиолюбитель или просто покупатель обязан знать, как проверить такой прибор.
Во-первых, проверить работоспособность КТ815 можно специальным пробником, но рассмотрим проверку обычным мультиметром, так как предыдущий прибор есть далеко не у всех.
Для проверки при помощи мультиметра, прибор нужно перевести в режим прозвонки. Сначала прикладываем отрицательный щуп к базе, а положительный к коллектору. На дисплее должно отобразиться значение от 500 до 800 мв. Затем меняем щупы, поставив на базу положительный, а на эмиттер отрицательный. Значения должны примерно равны прошлым.
Затем нужно проверить обратное падение напряжение. Для этого поставим сначала отрицательный щуп на базу, а положительный на коллектор. Должны получится единица. В случае с замером на базе и эмиттере, произойдёт то же самое.
Аналоги транзистора КТ117: выбор по параметрам
При выборе аналогов для замены транзистора КТ117 необходимо руководствоваться следующими параметрами:
- Тип: аналогичный транзистор должен быть биполярным, p-n-p типа.
- Максимальное коллекторное напряжение: выбранный аналог должен иметь такое же или более высокое значение, чем у КТ117.
- Максимальный коллекторный ток: выбранный аналог должен иметь такое же или более высокое значение, чем у КТ117.
- Коэффициент усиления тока: аналогичный транзистор должен иметь близкое к КТ117 значение коэффициента усиления тока.
- Мощность: выбранный аналог должен иметь такую же или более высокую мощность, чем у КТ117.
Популярными аналогами транзистора КТ117 являются, например, КТ361, КТ815, КТ3102, КТ315Б, КТ6137. Они имеют схожие параметры и могут быть успешно использованы вместо КТ117.
Регулятор для индуктивной нагрузки
Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.
Существует два варианта решения проблемы:
- Подача на управляющий электрод серии однотипных импульсов.
- Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.
Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.
Схема регулятора мощности для индуктивной нагрузки
Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.
Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности
Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.
Нейтринные трезубцы и интерференция W-Z
Аби Б., Аччарри Р., Асеро М.А., Адамов Г., Адамс Д., Адинольфи М., Ахмад З., Ахмед Дж., Алион Т., Монсалве С.А., Альт С., Андерсон Дж., Андреопулос С., Эндрюс М.П., Андрианала Ф., Андринга С., Анковски А., Антонова М., Антуш С., Аранда-Фернандес А., Арига А., Арнольд Л.О., Аррояве М.А., Асаади Дж., Аурисано А., Аушев В., Аутьеро Д., Азфар Ф., Бэк Х, Бэк Дж.Дж., Бэкхаус С., Бессо П., Бэгби Л., Бажу Р., Баласубраманян С., Бальди П., Бамбах Б., Барао Ф., Баренбойм Г., Баркер Г.Дж., Баркхаус В., Барнс С., Барр Г., Монарка Д.Б., Баррос Н., Барроу Д.Л., Башьял А., Баск В., Бэй Ф. , Alba JLB, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci С., Бетанкур М., Безавада Ю., Бхаттачарджи М., Бхуян Б., Биаги С., Биан Дж., Биассони М., Бири К., Билки Б., Бишай М., Битадзе А., Блейк А., Зифферт Б.Б., Блащик ФДМ, Блейзи Г.К., Блюхер Э., Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Boo th A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ , Бриццолари К.
Достоинства и недостатки составных транзисторов
Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.
Достоинства составных пар Дарлингтона и Шиклаи:
- Высокий коэффициент усиления по току.
- Схема Дарлингтона изготавливается в составе интегральных схем и при одинаковом токе площадь занимаемая парой на поверхности кристалла кремния меньше, чем у одиночного биполярного транзистора.
- Применяются при относительно высоких напряжениях.
Недостатки составного транзистора:
- Низкое быстродействие, особенно в ключевом режиме при переходе из открытого состояния в закрытое. Поэтому составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, работающих в линейном режиме. На высоких частотах их частотные параметры хуже, чем у одиночного транзистора.
- Прямое падение напряжения на переходе база-эмиттер выходного транзистора в схеме Дарлингтона почти в два раза больше, чем в одиночном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В, так как не может быть меньше, чем удвоенное падение напряжения на прямосмещенном p-n переходе.
- Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности, так как не может быть меньше чем падение напряжения на прямосмещенном p-n переходе плюс падение напряжения на насыщенном входном транзисторе.
Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчетом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии (начальный ток коллектора) создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счетфорсирования закрытия транзистора , так как неосновные носители, накопленные в базе VT2 при его запирании из режима насыщения не только рассасываются, но и стекают через этот резистор. Обычно сопротивление R1 выбирают величиной сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в маломощном транзисторе Дарлингтона. Примером схемы Дарлингтона выполненной в одном корпусе со встроенным эмиттерным резистором служит мощный n-p-n транзистор Дарлингтона типа КТ825, его типовой коэффициент усиления по току около 1000 при коллекторном токе 10 А.
Регулятор мощности на кт117
РЕГУЛИРОВКА МОЩНОСТИ
Чаще всего регуляторы мощности устройств делают на тринисторах, используя его в качестве выходного мощного ключа. Но тринистор в цепи переменного тока неудобен тем, что требует питания через выпрямительный мост, который при большой мощности нагрузки должен быть установлен на радиатор. В этом плане для ключевого элемента более удобен симистор. Основное отличие симистора — это возможность коммутации не только постоянного, но и переменного тока, который может протекать в любом направлении — как от анода к катоду, так и в противоположную сторону.
Для справки: симисторы при положительном напряжении на аноде могут включаться импульсами любой полярности, подаваемыми на управляющий электрод относительно катода, а при отрицательном напряжении на аноде — импульсами только отрицательной полярности. Управление симистором постоянным током требует большой мощности, а при импульсном управлении необходим формирователь, обеспечивающий короткие импульсы в момент прохождения сетевого напряжения через ноль, что снижает уровень помех по сравнению с регуляторами, в которых использован фазоимпульсный метод регулирования.
Устройство регулировки мощности содержит симистор, узел временной (фазовой) задержки, компенсирующую цепь и источник питания. Компенсирующая цепочка R8 C2 к напряжению стабилитрона VD3 добавляет величину напряжения, пропорциональную питающему напряжению. Эта сумма является межбазовым напряжением однопереходного транзистора КТ117. Уменьшение питающего напряжения снижает напряжение питания транзистора и вызывает уменьшение временной задержки. От известной схемы симисторного регулятора мощности на BT136-600 и динисторе DB-3, эта отличается стабилизацией управляющих импульсов и соответственно большей точностью и неизменностью выходного напряжения.
При наладке устройства регулировки мощности, надо включить его в сеть с нагрузкой через автотрансформатор , а параллельно нагрузке установить вольтметр. Меняя напряжение переменным резистором R8 на входе регулятора, добиваемся минимального напряжения на нагрузке. Трансформатор выполнен на сердечнике Ш5х6, первичная обмотка 40 витков, вторичная 50 витков ПЭЛ-0,2 – 0.3. В своём варианте устройства регулировки мощности поставил трансформатор на ферритовом кольце К20х10х6 с двумя одинаковыми обмотками по 40 витков – всё отлично заработало. Для визуального контроля напряжения (мощности) на нагрузке, поставил небольшой вольтметр переменного тока собранный из индикатора уровня записи бобинного советского магнитофона. Подключаем его естественно параллельно нагрузке. Светодиоды красного свечения показывают, что устройство регулировки мощности включено в сеть и выполняют подсветку шкалы.
К данному регулятору можно подключать активную нагрузку мощностью до двух киловат — электроплиты, электрочайники, электрокамины, утюги и т. д., а при замене симистора на более мощный, например ТС132-50, до 10 кВт. Реальный пример использования: у соседа постоянно выбивают пробки автоматы на 16 А при эксплуатации электрочайника Тефаль 2 кВт. Замена их невозможна, так как проживает он не в своей квартире. Проблему решило данное устройство для регулировки, установленное на 80% мощности.
Полезные доработки: при работе с индуктивной нагрузкой, параллельно симистору регулятора мощности надо включить RC цепочку для ограничения скорости нарастания анодного напряжения. Любой симисторный регулятор является источником радиопомех, поэтому регулятор мощности желательно снабдить фильтром радиопомех. Фильтр радиопомех LC представляет собой обычный Г-фильтр с катушкой и конденсатором. В качестве дросселя L используется катушка из 100 витков провода, намотанного на ферритовый стержень диаметром 8 мм и длиной 50 мм. Диаметр провода 1 мм соответствует максимальной мощности нагрузки примерно 700 Вт. Предохранитель на номинальный ток нагрузки защищает симистор от короткого замыкания в нагрузке. При настройке соблюдайте меры безопасности, так как все элементы устройства для регулировки мощности гальванически связаны с сетью 220 В.
Характеристики КТ117 транзистора
Вот основные характеристики КТ117 транзистора:
- Тип: P-N-P
- Мощность коллектора: не менее 0.15 Вт
- Максимальное обратное напряжение коллектора-эмиттера (Uкэо): не менее 20 В
- Максимальный ток коллектора (Iкмакс): не менее 50 мА
- Коэффициент усиления тока (β): 30-180
- Максимальная рабочая частота (fT): не менее 250 МГц
Транзистор КТ117 имеет стандартную цоколевку TO-18, которая позволяет его удобно монтировать на печатную плату или использовать в других конструкциях.
Одной из особенностей транзистора КТ117 является его низкий уровень шума и хорошая линейность усиления, что делает его идеальным для применения в аудиоусилителях.
Как заменить транзистор КТ117: пошаговая инструкция
Если вам требуется заменить транзистор КТ117, вы можете воспользоваться следующей пошаговой инструкцией:
- Проверьте спецификации КТ117 и определите его основные параметры, такие как максимальный ток коллектора и максимальное напряжение коллектора.
- Выберите аналог транзистора КТ117 схожих параметров. Для этого вы можете воспользоваться справочниками и онлайн-ресурсами, где указаны параметры различных транзисторов.
- Проверьте наличие выбранного аналога в магазинах электронных компонентов или интернете.
- Приобретите выбранный аналог транзистора КТ117.
- Изучите даташит аналога, чтобы убедиться, что его параметры полностью соответствуют требованиям вашей схемы.
- При необходимости, подготовьте плату для установки нового транзистора. Если аналог имеет другую конструкцию ножек, вам может потребоваться перестановка или дополнительные манипуляции.
- Скопируйте схему, которую вы используете с КТ117, и замените транзистор на выбранный аналог.
- Тщательно проверьте подключение нового транзистора: убедитесь, что он правильно установлен, а его ножки надежно подпаяны к соответствующим контактам на плате.
- Проверьте целостность схемы и отрегулируйте необходимые параметры, если это требуется.
- Протестируйте работу схемы с новым транзистором, чтобы убедиться, что все в порядке и замена прошла успешно.
Следуя этой пошаговой инструкции, вы сможете успешно заменить транзистор КТ117 на его аналог схожих параметров и продолжить использовать вашу схему без проблем.
Технические характеристики
Транзисторы КТ361 распределены по параметрам группам усиления и отличаются между собой преимущественно такими основными характеристиками: максимальное постоянное напряжения между выводами К-Э, К-Б (при RБЭ=10 кОм) от 20 до 50 В; статическим коэффициентом передачи тока (H21Э) от 20 до 350. При этом разброс возможного H21Э, даже в одинаково промаркированных устройствах, может значительно варьироваться. У них также разные напряжения между К-Э от 10 до 60 В, при обратном токе К-Э не более 1 мА. Другие значения параметров похожие и являются типовыми для всего семейства.
Предельно допустимые
Рассмотрим предельно допустимые параметры, характерные для серии КТ361:
- напряжение между выводами Б-Э до 4В;
- ток коллектора до 50мА;
- мощность рассеивания: 150мВт, если Т>+100оС до 30мВт;
- температуры: кристалла до 120 оС; окружающей среды – 60…+100 оС;
- статический потенциал до 200 В.
При повышении нагрева устройства свыше +100 оС отдельные параметры ухудшаются. Особенно это сильно влияет на мощность рассеивания.
Типовые электрические
К типовым электрическим параметрам у КТ361 относятся:
- граничная частота по H21Э (если UKЭ=10 В и IЭ=5 мА) более 250 МГц;
- обратные токи: между К-Э (при RБЭ=10 кОм и максимальном UKЭ) до 1 мкА; коллектора (при UKБ=10В) до 1 мкА;
- возможная емкость перехода на коллекторе-7..9 пФ;
- статический коэффициент усиления H21Э от 20 до 350.
Исходя из вышесказанного, КТ361 можно отнести к высокочастотным полупроводниковым триодам p-n-p-структуры малой мощности. В таблице представлены основные значения наиболее распространенных его групп.
Особенности работы
Из-за специфичной эпитаксиально-планарной технологии изготовления, КТ361 получился не столь хорош, как его «старший брат» КТ315. К основным его недостаткам можно отнести:
- большой разброс значений H21Э;
- в два раза меньший предельно допустимый коллекторный ток;
- внезапно появляющиеся/пропадающие шумы.
Вместе эти транзисторы выгодней использовать при IК в районе 20…30 мА, в этот момент H21Э у них самый высокий. Но при одинаковых условиях и режимах эксплуатации КТ 361 выходит из строя быстрее. Как следствие альтернативу ему приходится искать чаще. Но многое зависит от схемы и её назначения.
Аналоги
Импортные аналоги для кт361 обычно подбирают из следующих устройств: BC556, 2N3905, BC557, BC308A, BC327, SS9012, 2N3906, Из отечественных в качестве замены можно рассмотреть: КТ3107, КТ502. В SMD-корпусе импортные ВС857, ВС858 и российский или белорусский КТ3129.
Маркировка
Первоначальная кодовая маркировка пластиковой упаковки КТ-13 состояла всего из одного символа, размещенного прямо по центру. Она могла запутать многих радиолюбителей, так как в начальный период производства (с 1967 г.) уже были похожие изделия в аналогичном исполнении, но с другими параметрами.
Поэтому с 1971г. обозначение группы коэффициента усиления по току у КТ361, состоящее всего из одной буквы, стали наносить посередине корпуса. Чуть ниже — дату выпуска. Данный транзистор легко отличить от КТ315, групповая принадлежность которого указана в левом верхнем углу на пластике. Таким образом, производители продолжают делать и сейчас.
Транзисторы в корпусе КТ-26 имеют полную цифро-буквенную маркировку и их идентификация обычно не вызывает трудностей.
Транзисторы – купить. или найти бесплатно.
Где сейчас можно найти советские транзисторы? В основном здесь два варианта – либо купить, либо – получить бесплатно, в ходе разборки старого электронного хлама.
Во время промышленного коллапса начала 90-х, образовались довольно значительные запасы некоторых электронных комплектующих. Кроме того, полностью производство отечественных электронных никогда не прекращалось и не прекращается по сей день. Это и обьясняет тот факт, что очень многие детали прошедшей эпохи, все таки – можно купить. Если же нет – всегда имеются более-менее современные импортные аналоги. Где и как проще всего купить транзисторы? Если получилось так, что поблизости от вас нет специализированного магазина, то можно попробовать приобрести необходимые детали, заказав их по почте. Сделать это можно зайдя на сайт-магазин, например -«Гулливер».
Если же у вас, имеется какая-то старая, ненужная техника – можно попытаться добыть транзисторы (и другие детали) из нее. Транзисторы КТ814 можно найти в магнитофонах – «Весна 205-1», «Вильма 204 стерео», Маяк 240С-1, Маяк 233, Ореанда 204С и. т. д.
Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
КТ814 – кремниевый биполярный p-n-p транзистор низкочастотный средней мощности, в пластмассовом корпусе TO-126, либо в корпусе D-PAK для поверхностного монтажа (в наименовании суффикс 9, например, КТ814А9).
Назначение: КТ814 -транзистор широкого применения для использования в ключевых и линейных схемах.
Типы: КТ814А, КТ814Б, КТ814В, КТ814Г
Комплементарная пара: КТ815 (npn транзистор с такими же характеристиками)
Аналог: BD136, BD138, BD140
Цоколевка КТ814: Э-К-Б , смотри рисунок
Производители: Интеграл (Беларусь), Кремний-Маркетинг (Брянск)
Datasheet: (подробные характеристики с графиками зависимостей параметров)
Особенности транзистора КТ117
КТ117 имеет следующие особенности:
Тип транзистора | NPН |
Максимальное рабочее напряжение коллектор-база (Uкб) | 60 В |
Максимальное рабочее напряжение коллектор-эмиттер (Uкэ) | 40 В |
Максимальный коллекторный ток (Iк) | 100 мА |
Максимальная мощность рассеяния (Pк) | 250 мВт |
Коэффициент усиления по току (β) | не менее 60 |
Транзистор КТ117 имеет малый размер и низкие потери мощности при работе в радиочастотных схемах. Он может использоваться как переключатель или усилитель сигнала в различных устройствах.
Для подключения транзистора КТ117 используется стандартная цоколевка TO-92. Это позволяет легко интегрировать его в существующие схемы и печатные платы.
Благодаря своим характеристикам, транзистор КТ117 является надежным и простым в использовании элементом электроники с широким спектром применения.
Тестирование составного полупроводника
Такой элемент по своей конструкции напоминает микросхему. Так как проверить микросхему на работоспособность мультиметром практически невозможно, так нельзя и проверить составной прибор, используя только тестер. Для тестирования понадобится собрать несложную схему.
В ней применяется источник постоянного напряжения 10−14 вольт. Нагрузкой цепи служит лампочка. В качестве резистора используется элемент мощностью 0,25 Вт. Его сопротивление рассчитывается по формуле h21*U/I, где:
- h21— коэффициент усиления;
- U — напряжение источника питания;
- I — ток нагрузки.
Для проверки на базу подаётся положительный сигнал от источника питания. Лампочка светится. При смене полярности лампочка гаснет. Такое поведение говорит о работоспособности прибора.
Таким образом, узнав, как прозвонить транзистор мультиметром, можно легко вычислить неисправный элемент в схеме, даже его не выпаивая.
Транзистор КТ209 — усилительный, эпитаксиально-планарный, кремниевый, структуры p-n-p. Нормируется по коэффициенту шума на частоте 1 кГц. Применяется в импульсных и усилительных модулях, а также в различных блоках герметизированной аппаратуры. Два номинала транзистора КТ209 выпускаются специально для применения в телевизионных приёмниках, это КТ209Б1 и КТ209В1.
Транзистор КТ203 — усилительный, эпитаксиально-планарный, кремниевый, структуры p-n-p. Применяется в импульсных и усилительных устройствах. КТ203А, КТ203Б, КТ203В, 2Т203А, 2Т203Б, 2Т203В, 2Т203Г, 2Т203Д выпускаются в металлостеклянном, а КТ203АМ, КТ203БМ, КТ203ВМ в пластмассовом корпусе с гибкими выводами. В металлостеклянном варианте тип транзистора указывается на корпусе. Пластмассовый вариант маркируется цветным кодом на торце:
КТ203АМ | тёмно-красный |
КТ209БМ | жёлтый |
КТ209ВМ | тёмно-зелёный |
Транзистор КТ117 — эпитаксиально-планарный, однопереходный, кремниевый, с базой n-типа. Применяется в маломощных генераторах. Имеет металлический корпус. Выводы — гибкие. Надпись о типе элемента нанесена на корпусе. Весит не более 0.45 г.
КТ117 цоколевка Цоколевка КТ117 показана на рисунке.
Обозначение на корпусе | Тип транзистора | Аналог |
---|---|---|
15 | MMBT3960 | 2N3960 |
1A | BC846A | BC546A |
1B | BC846B | BC546B |
1C | MMBTA20 | MPSA20 |
1D | BC846 | — |
1E | BC847A | BC547A |
1F | BC847B | BC547B |
1G | BC847C | BC547C |
1H | BC847 | — |
1J | BC848A | BC548A |
1K | BC848B | BC548B |
1L | BC848C | BC548C |
1M | BC848 | — |
1P | FMMT2222A | 2N2222A |
1T | MMBT3960A | 2N3960A |
1X | MMBT930 | — |
1Y | MMBT3903 | 2N3903 |
2A | FMMT3906 | 2N3906 |
2B | BC849B | BC549B |
Как проверить транзистор? (Или как прозвонить транзистор) Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор.
Проверка транзистора мультиметром
Выводы транзистора должны быть подключены правильно. Будьте внимательны, при неправильном подключении выводов транзистора он может сгореть почти мгновенно при включении.
Бывает так, что ориентация корпуса и выводов транзистора понятна по рисунку на печатной плате. Если этого нет, то необходимо обращаться к справочникам, чтобы определить цоколёвку транзистора (расположение выводов транзистора, распиновку транзистора).
Описание транзисторов
Как выбрать замену для транзистора КТ117
1. Тип корпуса: КТ117 имеет корпус TO-3, поэтому замена должна иметь совместимый тип корпуса. Проверьте параметры корпуса заменяющего транзистора, чтобы убедиться, что они совпадают с КТ117.
2. Максимальное рабочее напряжение (Uceo): Убедитесь, что заменяющий транзистор имеет такое же или выше максимальное рабочее напряжение, чем КТ117. Если напряжение слишком низкое, то замена может не работать должным образом.
3. Максимальный ток коллектора (Ic): Проверьте, что заменяющий транзистор имеет такой же или больший максимальный ток коллектора, чем КТ117. Если ток слишком маленький, то замена может не справиться с задачей.
4. Коэффициент усиления (Hfe): Убедитесь, что коэффициент усиления заменяющего транзистора соответствует требованиям вашей цепи или схемы. Если коэффициент усиления сильно отличается от КТ117, то это может повлиять на работу вашей схемы.
При выборе замены для КТ117, можно обратиться к справочной документации производителей электронных компонентов, таких как Philips, Texas Instruments, STMicroelectronics и др. Они обычно предоставляют таблицы соответствия, которые помогут вам найти подходящую замену для вашей цепи или схемы.
Транзистор КТ117 | Заменяющий транзистор | Ссылка на документацию |
---|---|---|
КТ117 | 2N3055 | STMicroelectronics |
КТ117 | BD239 | Philips |
КТ117 | TIP3055 | Texas Instruments |
Транзисторы КТ814
Т ранзисторы КТ814 – кремниевые, мощные, низкочастотные, структуры – p-n-p. Корпус пластмассовый, с гибкими выводами. Масса – около 0,7 г. Маркировка буквенно – цифровая, на боковой поверхности корпуса, может быть двух типов.
Кодированая четырехзначная маркировка в одну строчку и некодированная – в две. Первый знак в кодированной маркировке КТ814 цифра 4, второй знак – буква, означающая класс. Два следующих знака, означают месяц и год выпуска. В некодированной маркировке месяц и год указаны в верхней строчке. На рисунке ниже – цоколевка и маркировка КТ814.
Наиболее важные параметры.
Коэффициент передачи тока У транзисторов КТ814А, КТ814Б, КТ814В – от 40 У транзисторов КТ814Г – 30
Граничная частота передачи тока. – 3МГц.
Максимальное напряжение коллектор – эмиттер. У транзисторов КТ814А – 25 в. У транзисторов КТ814Б – 40 в. У транзисторов КТ814В – 60 в. У транзисторов КТ814Г – 80 в.
Максимальный ток коллектора(постоянный). У всех транзисторов КТ814 – 1,5 А.
Напряжение насыщения коллектор-эмиттер при коллекторном токе 0,5А и базовом 0,05А – 0,6 в.
Напряжение насыщения база-эмиттер при коллекторном токе 0,5А и базовом 0,05А – 1,2 в.
Рассеиваемая мощность коллектора. – 10 Вт(с радиатором).
Обратный ток коллектора при напряжении коллектор-база 40в и температуре окружающей среды не превышающей +25 по Цельсию не более – 50 мкА.
Емкость эмиттерного перехода при напряжении эмиттер-база 0,5в при частоте 465 КГц не более – 75 пФ.
Емкость коллекторного перехода при напряжении коллектор-эмиттер 5в при частоте 465 КГц не более – 60 пФ.
Транзистор комплементарный КТ814 – КТ815.
Транзистор КТ3117А1
В корзину
- Описание и характеристики
- Отзывы(0)
- Инструкция
Импульсный высокочастотный n-p-n транзистор КТ3117А1 предназначен для использования в оперативных и постоянных запоминающих устройствах и другой радиоэлектронной аппаратуре, изготавливаемой для народного хозяйства.
Корпусное исполнение
корпус КТ-26 (ТО-92) – КТ3117А1
Вывод
(корпус КТ-26) |
Назначение
(корпус КТ-26) |
№1 | Эмиттер |
№2 | База |
№3 | Коллектор |
Параметры | Обозначение | Ед. измер | Режимы измерения | Min | Max |
Обратный ток коллектора | Iкбо | мкА | Uкб=60B,Iэ=0 | — | 10 |
Статический коэффициент передачи тока | h31Е | — | Uкб=-5B,Iэ=200мA | 40 | 200 |
Напряжение насыщения коллектор- эмиттер | Uкэ(нас) | В |
Iк=500мА,Iб=50мA
—
0,6
Напряжение насыщения база — эмиттер
Uбэ(нас)
В
Iк=500мА,Iб=50мA
—
1,2
Емкость коллекторного перехода*
Cк*
пФ
Uкб=10B, Iэ=0, f=10MГц
—
10
Емкость эмиттерного перехода*
Сэ*
пФ
—
—
80
Граничная частота коэффициента передачи тока*
Fгр*
MГц
—
—
200
*Справочные параметры
Параметры | Обозначение | Ед. измер. |
Значение |
Напряжение коллектор-база | Uкб max | В | 60 |
Напряжение коллектор-эмиттер | Uкэ max | В | 60 |
Напряжение эмиттер-база | Uэб max | В | 4 |
Постоянный ток коллектора | Iк max | мА | 400 |
Импульсный ток коллектора | Iки max | мА | 800 |
Постоянная рассеиваемая мощность коллектора | Рк max | мВт | 500 |
Температура перехода | Tj | C | 150 |
Устройство и обозначение биполярного транзистора.
Схематично биполярный транзистор можно представить в виде пластины полупроводника с чередующимися областями разной электропроводности, которые образуют два p-n перехода. Причем обе крайние области обладают электропроводностью одного типа, а средняя область электропроводностью другого типа, и где каждая из областей имеет свой контактный вывод.
Если в крайних областях полупроводника преобладает дырочная электропроводность, а в средней области электронная, то такой полупроводниковый прибор называют транзистором структуры p-n-p.
А если в крайних областях преобладает электронная электропроводность, а в средней дырочная, то такой транзистор имеет структуру n-p-n.
А теперь возьмем схематичную часть транзистора и прикроем любую крайнюю область, например, область коллектора, и посмотрим на результат: у нас остались открытыми область базы и эмиттера, то есть получился полупроводник с одним p-n переходом или обычный полупроводниковый диод. О диодах можно почитать здесь.
Если же мы прикроем область эмиттера, то останутся открытыми области базы и коллектора — и также получается диод.
Отсюда возникает вывод, что биполярный транзистор можно представить в виде двух диодов с одной общей областью, включенных навстречу друг другу. При этом общая (средняя) область называется базой, а примыкающие к базе области коллектором и эмиттером. Это и есть три электрода транзистора.
Примыкающие к базе области делают неодинаковыми: одну из областей изготавливают так, чтобы из нее наиболее эффективно происходил ввод (инжекция) носителей заряда в базу, а другую область делают таким-образом, чтобы в нее эффективно осуществлялся вывод (экстракция) носителей заряда из базы.
Отсюда получается:
область транзистора, назначением которой является ввод (инжекция) носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным.
область транзистора, назначением которой является вывод (экстракция) носителей из базы, называется коллектором, и соответствующий p-n переход коллекторным.
То есть получается, что эмиттер вводит электрические заряды в базу, а коллектор их забирает.
Различие в обозначениях транзисторов разных структур на принципиальных схемах заключается лишь в направлении стрелки эмиттера: в p-n-p транзисторах она обращена в сторону базы, а в n-p-n транзисторах – от базы.
Проверка рабочего состояния транзистора
Транзистор – это электронное устройство, которое усиливает или регулирует электрический ток. При работе с транзисторами может возникнуть необходимость проверить их рабочее состояние. Один из способов проверки – использование мультиметра CT117.
Для проверки рабочего состояния однопереходного транзистора с помощью мультиметра CT117, следуйте этим шагам:
- Подготовьте инструменты: мультиметр CT117, однопереходный транзистор, соединительные провода.
- Подключите мультиметр: вставьте красный провод мультиметра в разъем для измерения тока, а черный провод – в разъем для измерения сопротивления.
- Установите мультиметр в режим “диодный тест”: поверните переключатель мультиметра в положение “диод/прямое напряжение”.
- Подключите транзистор: подключите соединительные провода мультиметра к входным и выходным пинам транзистора.
- Измерьте напряжение: приложите красный провод мультиметра к базе транзистора, а черный провод – к коллектору. Затем меняйте провода местами и измерьте напряжение между базой и эмиттером.
- Анализируйте результаты: если напряжение между базой и коллектором составляет около 0,6-0,7 В, а между базой и эмиттером – около 0,2-0,3 В, значит, транзистор работает исправно.
Важно помнить, что для надежной проверки транзистора необходимо иметь данные о его характеристиках и проводить проверку в соответствии с указанными параметрами. Некорректное использование мультиметра или неправильное подключение транзистора может привести к ошибочным результатам
Регулятор мощности на симисторе и тиристоре
Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.
Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.