Кп707в2

Транзистор кт815, описание его характеристик и параметров, аналогов и маркировки с цоколёвкой

Транзисторы КТ814

Т ранзисторы КТ814 – кремниевые, мощные, низкочастотные, структуры – p-n-p. Корпус пластмассовый, с гибкими выводами. Масса – около 0,7 г. Маркировка буквенно – цифровая, на боковой поверхности корпуса, может быть двух типов.

Кодированая четырехзначная маркировка в одну строчку и некодированная – в две. Первый знак в кодированной маркировке КТ814 цифра 4, второй знак – буква, означающая класс. Два следующих знака, означают месяц и год выпуска. В некодированной маркировке месяц и год указаны в верхней строчке. На рисунке ниже – цоколевка и маркировка КТ814.

Наиболее важные параметры.

Коэффициент передачи тока У транзисторов КТ814А, КТ814Б, КТ814В – от 40 У транзисторов КТ814Г – 30

Граничная частота передачи тока. – 3МГц.

Максимальное напряжение коллектор – эмиттер. У транзисторов КТ814А – 25 в. У транзисторов КТ814Б – 40 в. У транзисторов КТ814В – 60 в. У транзисторов КТ814Г – 80 в.

Максимальный ток коллектора(постоянный). У всех транзисторов КТ814 – 1,5 А.

Напряжение насыщения коллектор-эмиттер при коллекторном токе 0,5А и базовом 0,05А – 0,6 в.

Напряжение насыщения база-эмиттер при коллекторном токе 0,5А и базовом 0,05А – 1,2 в.

Рассеиваемая мощность коллектора. – 10 Вт(с радиатором).

Обратный ток коллектора при напряжении коллектор-база 40в и температуре окружающей среды не превышающей +25 по Цельсию не более – 50 мкА.

Емкость эмиттерного перехода при напряжении эмиттер-база 0,5в при частоте 465 КГц не более – 75 пФ.

Емкость коллекторного перехода при напряжении коллектор-эмиттер 5в при частоте 465 КГц не более – 60 пФ.

Транзистор комплементарный КТ814 – КТ815.

P208 Datasheet (PDF)

 0.1. Size:445K  sanyo atp208.pdf

ATP208Ordering number : ENA1396ASANYO SemiconductorsDATA SHEETN-Channel Silicon MOSFETGeneral-Purpose Switching DeviceATP208ApplicationsFeatures Low ON-resistance Large current 4.5V drive Slim package Halogen free compliance Protection diode inSpecifications at Ta=25CAbsolute Maximum RatingsParameter Symbol Conditions Ratings UnitDrai

 0.2. Size:97K  sanyo fp208.pdf

Ordering number:EN4535AFP208PNP Epitaxial Planar Silicon TransistorDriver ApplicationsFeatures Package Dimensions Composite type with 2 PNP transistors in oneunit:mmpackage, facilitating high-density mounting.2097B The FP208 is composed of 2 chips each equivalentto the 2SB1121.Electrical Connection1:Base 11:Base 12:Collector 12:Collector 13:Emitter

 0.3. Size:425K  diodes dmp2088lcp3.pdf

DMP2088LCP3 20V P-CHANNEL ENHANCEMENT MODE MOSFET Product Summary Features and Benefits ID Low Qg & Qgd BVDSS RDS(ON) Max TA = +25C Small Footprint Low Profile 0.30mm Height 88m @ VGS = -8V -2.9A -20V Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) 105m @ VGS = -4.5V -1.8A Halogen and Antimony Free. Green Device (Note 3) Descrip

 0.4. Size:1875K  allpower ap2080k.pdf

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер
обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В
выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении
таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется
напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на R. Он необходим, чтобы при подаче управляющего напряжения
не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый
ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

Главное — не превысить допустимый
ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора
hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Модификации и маркировка транзистора S8050

Модель PC UCB UCE UBE IC TJ fT Cob hFE Корпус Маркировка
S8050A 0,625 40 25 6 0,8 150 100 9 85 TO-92
GS8050T 0,625 40 25 6 0,8 150 100 9 45 TO-92
GSTSS8050 1 40 25 5 1,5 150 100 85 TO-92
MPS8050 0,625 40 25 6 1,5 150 190 9 85 TO-92
S8050A/B/C/D/G 0,625 40 25 6 0,8/0,5 150 100/150 9 85…300 TO-92
S8050T 0,625 40 25 6 0,5 150 150 85 TO-92
SPS8050 0,625 15 12 6,5 1,5 150 260 5 200 TO-92
SS8050/C/D/G 1 40 25 5 1,5 150 100 85…400 TO-92
SS8050T 1 40 25 5 1,5 150 100 85 TO-92
STS8050 0,625 30 25 6 0,8 150 120 19 85 TO-92
Транзисторы исполнения SMD и их маркировка
MMSS8050W-H/J/L 0,2 40 25 5 1,5 150 100 15 120…400 SOT-323 Y1
S8050W 0,25 40 25 6 0,8 150 100 9 85 SOT-323 Y1
SS8050W 0,2 40 25 5 1,5 150 100 120 SOT-323 Y1
GSTSS8050LT1 0,225 40 25 5 1,5 150 100 100 SOT-23 1HA
MMSS8050-L/H 0,3 40 25 5 0,5 150 150 120…350 SOT-23 Y1
MPS8050S 0,35 40 25 6 1,5 150 190 85 SOT-23
MPS8050SC 0,35 40 25 5 1,2 150 150 85…300 SOT-23
MS8050-H/L 0,2 40 25 6 0,8 150 150 80…300 SOT-23 Y11
S8050 0,3 40 25 5 0,5 150 150 120 SOT-23
S8050M-/B/C/D 0,45 40 25 6 0,8 150 100 9 85…300 SOT-23 HY3B/C/D
SS8050LT1 0,225 40 25 5 1,5 150 150 120 SOT-23 KEY
KST8050D 0,25 50 50 6 1,2 150 100 100…320 SOT-23 Y1C, Y1D
KST8050M 0,3 40 25 6 0,8 150 150 40…400 SOT-23 Y11
KST8050X 0,3 40 20 5 1,5 150 100 20 40…350 SOT-23 Y1+
KST9013 0,3 40 25 5 0,5 150 150 200…400 SOT-23 J3
KST9013C 0,3 40 25 5 0,5 150 150 40…200 SOT-23 J3Y
S8050LT1 0,3 40 25 5 0,5 150 150 120 SOT-23 J3Y
MMS8050-L/H 0,3 40 25 5 0,5 150 150 50…350 SOT-23 J3Y
DMBT8050 0,3 40 25 5 0,8 150 100 120 SOT-23 J3Y
KST8050S 0,3 40 25 5 0,5 150 150 50…400 SOT-23 J3Y
KTD1304S 0,2 25 20 12 0,3 150 50 10 20…800 SOT-23 J3Y
KTD1304 0,2 25 20 12 0,3 150 60 20…1000 SOT-23 J3Y или MAX

Миниатюрные размеры SMD-корпусов (SOT-23, SOT-323) не позволяют производителю использовать традиционные способы маркировки продукции. Поэтому обычно применяется 2-4 символьный буквенно-цифровой код, наносимый на лицевую поверхность корпуса. Какая-либо единая система среди производителей отсутствует. Кроме того, некоторые предприятия используют одинаковые обозначения, не позволяющие однозначно идентифицировать производителя. Во многих случаях отличающиеся одним символом коды используются и для обозначения групп одного и того же изделия в разных диапазонах значений параметра hFE.

Наиболее часто встречающийся маркировочный код “J3Y” соответствует транзисторам S8050 компаний-производителей: «DC COMPONENTS», «KEXIN», «SECOS», «Jin Yu Semiconductor», «LGE», «WEITRON», «MCC», «GLOBALTECH Semiconductor», «Shenzhen Tuofeng Semiconductor Technologies».

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Цоколевка широко распространенных транзисторов

Цоколевка широко распространенных транзисторов и цветовая и кодовая маркировка транзисторов.

Цветовая и кодовая маркировка транзисторов

В цветовой и кодовой маркировке транзисторов нет единых стандартов. Каждый завод, который производит транзисторы, принимает свои цветовые и кодовые обозначения. Вы можете встретить транзисторы одного типа и группы, которые изготовлены разными заводами и маркируются по-разному, или разные транзисторы, которые марки­руются одинаково. В этом случае их можно отличить только по некоторым до­полнительным признакам, таким как длина выводов коллектора и эмиттера или окраска торцевой (противоположной выводам) поверхности транзистора.

Табл. 8.13. Цветовая и кодовая маркировка транзисторов в корпусе КТ-26.

Цветовая маркировка транзисторов осуществляется двумя точками. Тип транзи­стора обозначается на боковой поверхности, а маркировка группы на торцевой (рис. 8.2).

Кодовая маркировка наносится на боковую поверх­ность транзистора (рис. 8.2). Тип транзистора обозначается кодовым знаком (табл. 8.13), а группа — соответствующей буквой. Дата изготовления в соответствии с ГОСТ 26486-82 кодируется двумя буквами или буквой и цифрой (табл. 8.14). Первая буква обознача­ет год выпуска, а следующая за ней цифра или буква — месяц. Кодированное обозначение даты изготовления применяется не только для транзисторов, но и для других радиоэлементов. На рис. 8.3 приведены примеры кодовой и цветовой маркировки транзисторов в корпусе КТ-26.

Транзисторы в корпусе КТ-27 могут маркироваться или буквенно — цифровым кодом (табл. 8.16 и рнс. 8.4) или ко­дом, состоящим из геометриче­ских фигур (рис. 8.4).

Транзисторы в корпусе КТ-27 дополнительно маркиру­ются окрашиванием торца кор­пуса, противоположного выводам: КТ814 — серо — бежевый;

КТ815 — серый нлн снренево — фиолетовый;

КТ816 — розово — красный;

КТ817 — серо — зелёный;

Транзисторы КТ814Б, КТ815Б, КТ816Б и КТ817Б иногда маркируются только окрашиванием торцевой поверхности без нанесения буквенно — цифрового кода.

Примеры маркировки транзисторов в корпусе КТ-13 приведены на рис. 8.6. Буква группы у транзисторов КТ315 наносится сбоку поверхности, а КТ361 — посередине.

Тип транзисторов КПЗОЗ и КП307 в корпусе КТ-1-12 маркируются соот­ветственно цифрами 3 и 7, группа — соответствующей буквой. Транзисторы КП327А маркируются одной белой точкой, а КП327Б — двумя (рис. 8.3).

Цветомузыкальная приставка на П213.

Очень несложную цветомузыкальную приставку можно собрать на трех транзистрах П213. Три раздельных усилительных каскада предназначены для усиления трех полос звуковой частоты. Каскад на транзисторе VT1 усиливает сигнал на частоте свыше 1000Гц, на транзисторе VT2 – от 1000 до 200Гц, на транзисторе VT3 – ниже 200гЦ. Разделение частот осуществляется простыми RC- фильтрами.

Входной сигнал берется с выхода акустических колонок. Его уровень регулируется с помощью потенциометра R1. Для подстройки уровня яркости каждого канала используются подстроечные резисторы R3, R5, R7. Смещение на базах транзисторов определяется значениями резисторов R2, R4, R6. Нагрузкой каждого каскада являются две параллельно включенные лампочки (6,3 В х 0,28 А). Питается схема от блока питания с выходным напряжением 8-9 В и максимальным током свыше 2А.

Транзисторы П213 могут иметь значительный разброс по усилению тока. Поэтому, значения резисторов R2, R4, R6 необходимо подбирать для каждого каскада — индивидуально. Ток коллектора при этом настраивается на такую величину, чтобы нити накала ламп немного светились в отсутствии входного сигнала. При этом транзисторы обязательно будут греться. Стабильность работы германиевых полупроводниковых приборов очень зависит от температуры. Поэтому, необходимо установить П213 на радиаторы — площадью от 75 кв.см.

Если же у вас, имеется какая-то старая, ненужная техника — можно попытаться добыть транзисторы (и другие детали) из нее. Транзисторы П213 можно найти радиоле Бригантина, приемнике ВЭФ Транзистор 17, приемниках Океан, Рига 101, Рига 103, Урал Авто-2. Транзисторы КТ815 в приемниках Абава РП-8330, Вега 342, магнитофонах «Азамат»(!), Весна 205-1, Вильма 204- стерео и т. д.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Эта страница показывает существующую справочную информацию о параметрах биполярного высокочастотного npn транзистора 2SC815

. Дана подробная информация о параметрах, схеме и цоколевке, характеристиках, местах продажи и производителях. Аналоги этого транзистора можно посмотреть на отдельной странице.

Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремний (Si) Структура полупроводникового перехода: npn

Производитель: NEC Сфера применения: Medium Power, High Voltage Популярность: 13955 Условные обозначения описаны на странице «Теория».

Зарубежная маркировка SMD

В таблице ниже обобщена информация о маркировочных кодах полупроводниковых приборов ведущих зарубежных фирм.  Для компактности в настоящий справочный материал не включены приборы-двойники, имеющие одинаковую маркировку и одинаковое название, но производимые разными изготовителями. Например, транзистор BFR93A выпускается не только фирмой Siemens, но и Philips Semiconductors, и Temic Telefunken.

Таблица маркировочных кодах полупроводниковых приборов ведущих зарубежных фирм.

Среди 18 представленных типов корпусов наиболее часто встречается SOT-23 – Small Outline Transistor. Он имеет почтенный возраст и пережил несколько попыток стандартизации.

Выше были приведены нормы конструктивных допусков, которыми руководствуются разные фирмы. Несмотря на рекомендации МЭК, JEDEC, EIAJ, двух абсолютно одинаковых типоразмеров в табл.1 найти невозможно.

Приводимые сведения будут подспорьем специалистам, ремонтирующим импортную радиоаппаратуру. Зная маркировочный код и размеры ЭРЭ, можно определить тип элемента и фирму-изготовитель, а затем по каталогам найти электрические параметры и подобрать возможную замену.

Кроме того, многие фирмы используют свои собственные названия корпуса. Следует отметить, что отечественные типы корпусов, такие как КТ-46 – это аналог SOT-23, KT-47 – это аналог SOT-89, КТ-48 – это аналог SOT-143, были гостированы еще в 1988 году.

Выпущенные за это время несколько десятков разновидностей отечественных SMD-элементов маркируют, как правило, только на упаковочной таре, транзисторы КТ3130А9 – еще и разноцветными метками на корпусе. Самые “свежие” типы корпусов – это SOT-23/5 (или, по-другому, SOT-23-5) и SOT-89/5 (SOT-89-5), где цифра “5” указывает на количество выводов.

Назвать такие обозначения удачными – трудно, поскольку их легко можно перепутать с трехвыводными SOT-23 и SOT-89. В продолжение темы заметим, что появились сообщения о сверхминиатюрном 5-выводном корпусе SOT-323-5 (JEDEC specification), в котором фирма Texas Instruments планирует выпускать логические элементы PicoGate Logic серии ACH1G и ACHT1G.

Из всех корпусов “случайным” можно назвать относительно крупногабаритный SOT-223. Обычно на нем помещаются если не все, то большинство цифр и букв названия ЭРЭ, по которым однозначно определяется его тип. Несмотря на миниатюрность SMD-элементов, их параметры, включая рассеиваемую мощность, мало чем отличаются от корпусных аналогов.

Для сведения, в справочных данных на транзисторы в корпусе SOT-23 указывается максимально допустимая мощность 0,25-0,4 Вт, в корпусе SOT-89 – 0,5-0,8 Вт, в корпусе SOT-223 – 1-2 Вт.

Маркировочный код элементов может быть цифровым, буквенным или буквенно-цифровым. Количество символов кода от 1 до 4, при этом полное наименование ЭРЭ содержит 5-14 знаков.

Самые длинные названия применяют:

  • американская фирма Motorola,
  • японская Seiko Instruments
  • тайваньская Pan Jit.
Код Тип ЭРЭ Фирма Рис. Код Тип ЭРЭ Фирма Рис.
7E MUN5215DW1T1 K2 MO 2Q
11 MUN5311DW1T1 L3 MO 2Q 7F MUN5216DW1T1 K2 MO 2Q
12 MUN5312DW1T1 L3 MO 2Q 7G MUN5230DW1T1 K2 MO 2Q
12 INA-12063 U2 HP 2Q 7H MUN5231DW1T1 K2 MO 2Q
13 MUN5313DW1T1 L3 MO 2Q 7J MUN5232DW1T1 K2 MO 2Q
14 MUN5314DW1T1 L3 MO 2Q 7K MUN5233DW1T1 K2 MO 2Q
15 MUN5315DW1T1 L3 MO 2Q 7L MUN5234DW1T1 K2 MO 2Q
16 MUN5316DW1T1 L3 MO 2Q 7M MUN5235DW1T1 K2 MO 2Q
BC847S N5 SI 2Q 81 MGA-81563 U1 HP 2Q
1P BC847PN P6 SI 2Q 82 INA-82563 U1 HP 2Q
31 MUN5331DW1T1 L3 MO 2Q 86 INA-86563 U1 HP 2Q
32 MUN5332DW1T1 L3 MO 2Q 87 INA-87563 U1 HP 2Q
33 MUN5333DW1T1 L3 MO 2Q 91 IAM-91563 U1 HP 2Q
34 MUN5334DW1T1 L3 MO 2Q A2 MBT3906DW1T1 P5 MO 2Q
35 MUN5335DW1T1 L3 MO 2Q A3 MBT3906DW9T1 P5 MO 2Q
36 ATF-36163 A1 HP 2Q A4 BAV70S E4 SI 2Q
3C BC857S P5 SI 2Q E6 MDC5001T1 U3 MO 2Q
3X MUN5330DW1T1 L3 MO 2Q H5 MBD770DWT1 F2 MO 2Q
46 MBT3946DW1T1 P6 MO 2Q II AT-32063 N2 HP 2Q
51 INA-51063 U2 HP 2Q M1 CMY200 U1 SI 2R
52 INA-52063 U2 HP 2Q M4 MBD110DWT1 F2 MO Q
54 INA-54063 U2 HP 2Q M6 MBF4416DW1T1 A3 MO 2Q
6A MUN5111DW1T1 L2 MO 2Q MA MBT3904DW1T1 N5 MO 2Q
6B MUN5112DW1T1 L2 MO 2Q MB MBT3904DW9T1 N5 MO 2Q
6C MUN5113DW1T1 L2 MO 2Q MC BFS17S N5 SI 2Q
6D MBF5457DW1T1 A3 MO 2Q RE BFS480 N5 SI 2Q
6D MUN5114DW1T1 L2 MO 2Q RF BFS481 N5 SI 2Q
6E MUN5115DW1T1 L2 MO 2Q RG BFS482 N5 SI 2Q
6F MUN5116DW1T1 L2 MO 2Q RH BFS483 N5 SI 2Q
6G MUN5130DW1T1 L2 MO 2Q T4 MBD330DWT1 F2 MO 2Q
6H MUN5131DW1T1 L2 MO 2Q W1 BCR10PN L3 SI 2Q
6J MUN5132DW1T1 L2 MO 2Q WC BCR133S K2 SI 2Q
6K MUN5133DW1T1 L2 MO 2Q WF BCR08PN L3 SI 2Q
6L MUN5134DW1T1 L2 MO 2Q WK BCR119S K2 SI 2Q
6M MUN5135DW1T1 L2 MO 2Q WM BCR183S K2 SI 2Q
7A MUN5211DW1T1 K2 MO 2Q WP BCR22PN L3 SI 2Q
7B MUN5212DW1T1 K2 MO 2Q Y2 CLY2 A1 SI 2R
7C MUN5213DW1T1 K2 MO 2Q 6s CGY60 U1 SI 2R
7D MUN5214DW1T1 K2 MO 2Q Y7s CGY62 U1 SI 2R

Биполярный транзистор 2N5087 — описание производителя. Основные параметры. Даташиты.

Наименование производителя: 2N5087

Тип материала: Si

Полярность: PNP

Максимальная рассеиваемая мощность (Pc): 0.31
W

Макcимально допустимое напряжение коллектор-база (Ucb): 50
V

Макcимально допустимое напряжение коллектор-эмиттер (Uce): 50
V

Макcимально допустимое напряжение эмиттер-база (Ueb): 3
V

Макcимальный постоянный ток коллектора (Ic): 0.05
A

Предельная температура PN-перехода (Tj): 135
°C

Граничная частота коэффициента передачи тока (ft): 40
MHz

Ёмкость коллекторного перехода (Cc): 4
pf

Статический коэффициент передачи тока (hfe): 250

Корпус транзистора:

2N5087
Datasheet (PDF)

 ..1. Size:434K  motorola 2n5086 2n5087.pdf

MOTOROLAOrder this documentSEMICONDUCTOR TECHNICAL DATAby 2N5086/DAmplifier Transistors2N5086PNP Silicon*2N5087*Motorola Preferred DeviceCOLLECTOR32BASE1EMITTER 123

 ..2. Size:49K  philips 2n5087 cnv 2.pdf

DISCRETE SEMICONDUCTORSDATA SHEETbook, halfpageM3D1862N5087PNP general purpose transistorProduct specification 1997 Jul 02Supersedes data of September 1994File under Discrete Semiconductors, SC04Philips Semiconductors Product specificationPNP general purpose transistor 2N5087FEATURES PINNING Low current (max. 100 mA)PIN DESCRIPTION Low voltage (max. 50 V).1

 ..3. Size:100K  fairchild semi 2n5086 2n5087 mmbt5087.pdf

2N5086/2N5087/MMBT5087PNP General Purpose Amplifier3 This device is designed for low level, high gain, low noise general purpose amplifier applications at collector currents to 50mA.2SOT-23TO-92 1Mark: 2Q11. Emitter 2. Base 3. Collector 1. Base 2. Emitter 3. Collector Absolute Maximum Ratings* Ta=25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collect

 ..4. Size:60K  central 2n5086 2n5087.pdf

145 Adams Avenue, Hauppauge, NY 11788 USATel: (631) 435-1110 Fax: (631) 435-1824

 ..5. Size:1285K  sprague 2n4265 2n4400 2n4401 2n4402 2n4403 2n4409 2n4410 2n4424 2n4425 2n4951 2n4952 2n4953 2n4954 2n5087 2n5088 2n5089.pdf

 0.1. Size:300K  motorola 2n5087rev0.pdf

MOTOROLAOrder this documentSEMICONDUCTOR TECHNICAL DATAby 2N5087/DAmplifier TransistorPNP Silicon2N5087COLLECTOR3Motorola Preferred Device2BASE1EMITTER123MAXIMUM RAT

 0.2. Size:155K  onsemi 2n5087-d.pdf

2N5087Preferred Device Amplifier TransistorPNP SiliconFeatures Pb-Free Packages are Available*http://onsemi.com3 COLLECTORMAXIMUM RATINGS2BASERating Symbol Value UnitCollector-Emitter Voltage VCEO 50 Vdc1 EMITTERCollector-Base Voltage VCBO 50 VdcEmitter-Base Voltage VEBO 3.0 VdcCollector Current — Continuous IC 50 mAdcTO-92Total Device Dissipation @ TA = 2

 0.3. Size:156K  onsemi 2n5087g.pdf

2N5087Preferred Device Amplifier TransistorPNP SiliconFeatures Pb-Free Packages are Available*http://onsemi.com3 COLLECTORMAXIMUM RATINGS2BASERating Symbol Value UnitCollector-Emitter Voltage VCEO 50 Vdc1 EMITTERCollector-Base Voltage VCBO 50 VdcEmitter-Base Voltage VEBO 3.0 VdcCollector Current — Continuous IC 50 mAdcTO-92Total Device Dissipation @ TA = 2

 0.4. Size:156K  onsemi 2n5087rlrag.pdf

2N5087Preferred Device Amplifier TransistorPNP SiliconFeatures Pb-Free Packages are Available*http://onsemi.com3 COLLECTORMAXIMUM RATINGS2BASERating Symbol Value UnitCollector-Emitter Voltage VCEO 50 Vdc1 EMITTERCollector-Base Voltage VCBO 50 VdcEmitter-Base Voltage VEBO 3.0 VdcCollector Current — Continuous IC 50 mAdcTO-92Total Device Dissipation @ TA = 2

 0.5. Size:49K  hsmc h2n5087.pdf

Spec. No. : HE6210HI-SINCERITYIssued Date : 1998.02.01Revised Date : 2005.01.20MICROELECTRONICS CORP.Page No. : 1/5H2N5087PNP EPITAXIAL PLANAR TRANSISTORDescriptionThis device was designed for low noise,high gain,general purpose amplifierapplications for 1uA to 25mA collector current.TO-92Absolute Maximum Ratings Maximum TemperaturesStorage Temperature ………..

Другие транзисторы… 2N508
, 2N5080
, 2N5081
, 2N5082
, 2N5083
, 2N5084
, 2N5085
, 2N5086
, 2N3773
, 2N5088
, 2N5089
, 2N508A
, 2N509
, 2N5090
, 2N5091
, 2N5092
, 2N5093
.

Заключение

Информация о маркировочных кодах, содержащаяся в литературе, требует критического подхода и осмысления. К сожалению, красиво оформленный каталог с безукоризненной полиграфией не гарантируют от опечаток, ошибок, разночтений и противоречий, поэтому исходите из данных, что приведены в справочнике о маркировке радиоэлементов.

В заключение хотелось бы поблагодарить источники, которые были использованы для подбора материала к данной статье:

www.mp16.ru

www.rudatasheet.ru

www.texnic.ru

www.solo-project.com

www.ra4a.narod.ru

Предыдущая
ПолупроводникиЧто такое биполярный транзистор
Следующая
ПолупроводникиSMD транзисторы

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: