Транзистор кт829а

Отечественные транзисторы и их параметры

Транзисторы КТ837(2Т837) и КТ829 – маркировка и цоколевка.

Особености проверки(прозвонки)на целосность транзисторов КТ829.

Так как транзистор КТ829 является составным, его вполне можно заменить несложной схемой КТ817+КТ819.

Не удивительно, что при проверки тестером переход база-эмиттер будет звониться в обе стороны, причем у разных КТ829 может наблюдаться значительный разброс по значению обратного сопротивления. От суммы сопротивлений изображенных в схеме на картинке, до гораздо меньших значений (7 кОм, к примеру). Отчего разброс так велик, автору доподлинно не известно, но то что на работоспособность КТ829 это влияет незначительно – это точно. Ведь имеющееся сопротивление эмиттер-база всего лишь слегка “подпирает” транзистор.

Транзисторы – купить… или найти бесплатно.

Где сейчас можно найти советские транзисторы?В основном здесь два варианта – либо купить, либо – получить бесплатно, в ходе разборки старого электронного хлама.

Во время промышленного коллапса начала 90-х? образовались довольно значительные запасы некоторых электронных комплектующих. Кроме того, полностью производство отечественных электронных никогда не прекращалось и не прекращается по сей день. Это и обьясняет тот факт, что очень многие детали прошедшей эпохи, все таки – можно купить. Если же нет – всегда имеются более-менее современные импортные аналоги. Где и как проще всего купить транзисторы? Если получилось так, что поблизости от вас нет специализированного магазина, то можно попробовать приобрести необходимые детали, заказав их по почте. Сделать это можно зайдя на сайт-магазин, например – “Гулливер”.

Если же у вас, имеется какая-то старая, ненужная техника – можно попытаться выпаять необходимые транзисторы из ее схем.Например, транзисторы КТ837 можно обнаружить в блоке усилителя активной акустической системы 35АС-013(Радиотехника S-70). в усилителях “Радиотехника У-7101 стерео,” “Радиотехника У-101 стерео.” На главную страницу

Характеристики транзисторов кт829, схема, аналоги, цоколевка

КТ829 – кремниевые мезапланарные составные усилительные n-p-n транзисторы большой мощности средней частоты. Применяются в переключающих устройствах, усилителях низкой частоты.

Предельные параметры КТ829

Максимально допустимый постоянный ток коллектоpа (IК max):

Максимально допустимый импульсный ток коллектоpа (IК, и max):

Граничное напряжение биполярного транзистора (UКЭ0 гр) при Т = 25° C:

  • КТ829Г — 45 В
  • КТ829В — 60 В
  • КТ829Б — 80 В
  • КТ829А — 100 В

Максимально допустимое постоянное напряжение коллектор-база при токе эмиттеpа, равном нулю (UКБ0 max) при Т = 25° C:

  • КТ829Г — 45 В
  • КТ829В — 60 В
  • КТ829Б — 80 В
  • КТ829А — 100 В

Максимально допустимое постоянное напряжение эмиттеp-база при токе коллектоpа, равном нулю (UЭБ0 max) при Т = 25° C:

Максимально допустимая средняя рассеиваемая мощность коллектора (PК, max) при Тк = 25° C:

Максимально допустимая температура перехода (Tп max):

Максимально допустимая температура корпуса (Tк max):

Электрические характеристики транзисторов КТ829 при Тп = 25oС

Статический коэффициент передачи тока биполярного транзистора (h21Э) при постоянном напряжении коллектор-эмиттеp (UКЭ) 3 В, при постоянном токе коллектоpа (IК) 3 А:

Напряжение насыщения коллектор-эмиттеp (UКЭ нас)

Обратный ток коллектор-эмиттеp при заданном сопротивлении в цепи база-эмиттеp (IКЭR)

Граничная частота коэффициента передачи тока (fгр)

Тепловое сопротивление переход-корпус (RТ п-к)

КТ829А-Г — 2,08 ° C/Вт

Опубликовано 12.02.2020

Транзистор КТ829 — DataSheet

Цоколевка транзистора КТ829

Цоколевка транзистора КТ829(Т-М)

Описание

Транзисторы кремниевые мезапланарные составные универсальные низкочастотные мощные. Предназначены для работы в усилителях низкой частоты, ключевых схемах.  Выпускаются в пластмассовом корпусе с жесткими выводами. Обозначение типа приводится на корпусе. Масса транзистора не более 2 г.

Параметры транзистора КТ829
Параметр Обозначение Маркировка Условия Значение

Ед. изм.

Аналог КТ829А BD267B, TIP122, BD901, BDW23C *2, BDW73C, BDW63C *2, 2SD1128 *2, 2SD1740 *2, BD267A *2
КТ829Б BD267A, BD263, TIP121, 

BD899A, BD899, BDW23B *2, BDW73B *2, BD267 *2

КТ829В BD331, TIP120, BD897A,

BD897, BDW23A, ТIР120 *2

КТ829Г BD665, BD675, BD895A,

BD895, BDW23, BDW73, 

BDW63 *2, BD695 *1

Структура  — n-p-n
Максимально допустимая постоянная рассеиваемая мощность коллектора PK max,P*K, τ max,P**K, и max КТ829А 60* Вт
КТ829Б 60*
КТ829В 60*

КТ829Г

60*
КТ829АТ

50

КТ829АП

50

КТ829АМ

60

Граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером
fгр, f*h31б, f**h31э, f***max
КТ829А

≥4
МГц

КТ829Б


≥4

КТ829В

≥4

КТ829Г

≥4

КТ829АТ

≥4

КТ829АП

≥4

КТ829АМ

≥4

Пробивное напряжение коллектор-база при заданном обратном токе коллектора и разомкнутой цепи эмиттера
UКБО проб., U*КЭR проб., U**КЭО проб.

КТ829А

100*
В

КТ829Б

80*

КТ829В

60*

КТ829Г

45*

КТ829АТ

100

КТ829АП

160

КТ829АМ

240

Пробивное напряжение эмиттер-база при заданном обратном токе эмиттера и разомкнутой цепи коллектора

UЭБО проб., 
КТ829А

5
В

КТ829Б

5

КТ829В

5

КТ829Г

5

КТ829АТ

5

КТ829АП

5

КТ829АМ

5

Максимально допустимый постоянный ток коллектора
IK max, I*К , и max
КТ829А

8(12*)
А

КТ829Б

8(12*)

КТ829В

8(12*)

КТ829Г

8(12*)

КТ829АТ

5

КТ829АП

5

КТ829АМ

8

Обратный ток коллектора — ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера

IКБО, I*КЭR, I**КЭO
КТ829А
100 В
≤1.5*
мА
КТ829Б
80 В
≤1.5*

КТ829В
60 В
≤1.5*

КТ829Г
60 В
≤1.5*

КТ829АТ

КТ829АП

КТ829АМ


Статический коэффициент передачи тока транзистора в режиме малого сигнала для схем с общим эмиттером
h21э,  h*21Э
КТ829А
3 В; 3 А
≥750*

КТ829Б
3 В; 3 А
≥750*

КТ829В
3 В; 3 А
≥750*

КТ829Г
3 В; 3 А
≥750*

КТ829АТ

≥1000

КТ829АП

≥700

КТ829АМ

400…3000

Емкость коллекторного перехода
cк,  с*12э
КТ829А

≤120
пФ

КТ829Б

≤120

КТ829В

≤120

КТ829Г

≤120

КТ829АТ

КТ829АП

КТ829АМ

Сопротивление насыщения между коллектором и эмиттером
 rКЭ нас,  r*БЭ нас, К**у.р.
КТ829А

≤0.57
Ом, дБ

КТ829Б

≤0.57

КТ829В

≤0.57

КТ829Г

≤0.57

КТ829АТ


≤0.3

КТ829АП

≤0.25

КТ829АМ

≤0.66

Коэффициент шума транзистора
Кш, r*b, P**вых
КТ829А


Дб, Ом, Вт

КТ829Б

КТ829В

КТ829Г

КТ829АТ

КТ829АП

КТ829АМ

Постоянная времени цепи обратной связи на высокой частоте
τк, t*рас,  t**выкл,  t***пк(нс)
КТ829А


пс

КТ829Б

КТ829В

КТ829Г

КТ829АТ

КТ829АП

КТ829АМ

Описание значений со звездочками(*,**,***) смотрите в таблице параметров биполярных транзисторов.

*1 — аналог по электрическим параметрам, тип корпуса отличается.

*2 — функциональная замена, тип корпуса аналогичен.

*3 — функциональная замена, тип корпуса отличается.

Входные характеристики

Зависимость статического коэффициента передачи тока от тока коллектора

Зависимость напряжения насыщения коллектор — эмиттер от Iк/Iб

Зависимость максимально допустимого напряжения коллектор-эмиттер от сопротивления база-эмиттер

Зависимость максимально допустимой мощности рассеивания коллектора от температуры корпуса

Область максимальных режимов

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

История разработки первых транзисторов

Склонности передаются по наследству, это видно на примере Уильяма Брэдфорда Шокли. Сын горного инженера и одной из первых в США женщины-геодезиста. Специфичное сочетание. В 22 года получил степень бакалавра, не остановился на достигнутом, и в 1936-м становится доктором философии. Звание, присуждённое Массачусетским институтом технологии, не означает, что Шокли изучал Ницше и Аристотеля. Степень говорит о наличии диссертации в области из большого перечня наук. Диковинное название – дань традиции, когда философия в средние века занималась широким спектром вопросов, по праву считаясь прародителем прочих направлений хода учёной мысли.

Лаборатория Белла

Смысл работы состоял в исследовании электронных уровней хлорида натрия. Зонная теория, объяснявшая процессы, происходившие в материалах, как раз набирала популярность. Согласно воззрениям теории, любой электрон в кристалле способен занимать уникальное, свойственное исключительно указанной частице, состояние с определённой энергией и направлением спина. Сообразно представлению градации идут с некоторой дискретностью в валентной зоне (связанные с ядром), вдобавок присутствует запрещённая область, где частицы располагаться не вправе. Из последнего тезиса исключением считаются примесные полупроводники, ставшие базисом для создания твердотельной электроники, включая биполярные транзисторы.

В Лаборатории Белла Шокли попал за любопытные идеи в области конструирования ядерных реакторов. Уран в чистом виде открыт задолго до этого, впервые на примере элемента Беккерель обнаружил радиоактивность. Бомбардировать нейтронами ядра металла пробовал в начале 30-х годов (XX века) Энрико Ферми, преследовалась цель – получить трансурановые элементы. Позднее оказалось доказано, что одновременно происходит радиоактивный распад с выделением вовне энергии. Шокли задумал бомбардировать U-235, чтобы получить новый источник большой мощности. В ходе Второй мировой войны занимался исследования по оценке возможного сухопутного вторжения Японии, собранные данные во многом способствовали решению Трумэна сбросить атомную бомбу на Хиросиму.

Лаборатория Белла поставила перед Шокли прямую задачу – отыскать альтернативу громоздким ламповым усилителям. Это означало бы экономию места и появление на свет нового поколения приборов, способных функционировать в условиях войны. Не секрет, что боевые заслуги СССР оказались по достоинству оценены на противоположной стороне океана. Шокли назначили менеджером бригады, бившейся над задачей, куда среди прочего входили создатели первого точечного транзистора:

  1. Джон Бардин;
  2. Уолтер Хаузер Браттейн.

Конструкция оказалась специфичной. К примеру, контактные площадки из золота прижаты пружиной к германиевому кристаллу p-n-перехода, больше напоминают лабораторную установку, нежели полнофункциональный прибор для военной техники. Собрано — при помощи канцелярских скрепок и ядовитого клея-электролита. Но прибор в будущем даст название Силиконовой Долине. Между учёными произошёл раздор, потому что теория поля Шокли, применяемая в транзисторе, не помогла созданию прибора, вдобавок упоминалась в канадском патенте Лилиенфельда 1925 года. В результате Лаборатория Белла выкидывает имя Уильяма из списка создателей при оформлении бумаг.

Примечательно, что структура MESFET (полевой транзистор), предложенная Лилиенфельдом, не функционировала. Но заложенные идеи в бюро приняли, и у Лаборатории Белла возникли сложности с подачей заявок. Парадокс, но учёные могли запатентовать лишь дизайн Бардина и Браттейна – ничего более. Остальное давно уже существовало в виде концепции на момент 1946 года. Шокли решил, что судьба сыграла с изобретателем очередную шутку после всех неудач. Однако компания Белла идёт на всяческие уступки, и общепринято, что Уильям фигурирует для прессы в качестве первого лица.

Уильям Брэдфорд Шокли

Шокли начинает трудиться над собственным направлением, попутно пытаясь исправить ситуацию. Последнее не даёт положительных результатов, зато первое приводит к созданию прибора, сегодня известного миру под именем биполярного транзистора. Перебирая ряд конструкций, 1 января 1948 года находит правильную, но не сразу осознает. Впоследствии к Шокли приходит идея, что ток образуется не только основными носителями заряда.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: