Транзистор КТ342БМ — параметры, цоколевка, аналоги, обозначение

Транзистор кт3102

Плюсы и минусы составного транзистора

Если говорить о плюсах этого замечательного устройства, то это, конечно же, очень высокий коэффициент усиления, который позволяет запускать транзистор даже с очень низким током на базе. Однако, есть и минусы, как и всегда. Казалось бы, что здесь может быть не так, а вот может. Дело в том, что быстродействием здесь и не пахнет, поэтому в основном транзистор Дарлингтона используется в низкочастотных схемах. Обычно их ставят на выходных каскадах схем, а также в блоках управления электродвигателями — там они действительно на своем месте. Также без них не обойтись и многим современным авто, ведь они являются важнейшей частью коммутатора электронных схем в системе зажигания.

Вот такую схему используют радиолюбители, когда делают составной транзистор своими руками (используя транзистор Дарлингтона вместе с электродвигателем):

Примеры использования

Вариантов применения транзистора TIP122 и его схем включения достаточно много, их просто невозможно уместить в одну статью. Поэтому рассмотрим только некоторые схемы с его участием. Первая — усилитель звуковой частоты на 12 Вт, вторая — автоматический регулятор скорости вращения вентилятора.

Усилитель низкой частоты

Данный усилитель сделан на микросхеме операционном усилителе TL081 и двух выходных транзисторах TIP122 и TIP127. При нагрузке 8 Ом рассматриваемый усилитель способен обеспечить выходную мощность 12 Вт. Напряжение питания данного прибора должно находиться в пределах от 12 до 18 вольт.

Автоматический регулятор скорости вращения вентилятора

Рассматриваемый регулятор скорости вращения вентилятора можно использовать для предотвращения перегрева различной бытовой аппаратуры, например, компьютера. Его устанавливают в корпус охлаждаемого им устройства. Данная схема позволяет автоматически регулировать скорость вращения вентилятора, в зависимости от температуры воздуха.

Температурный датчик LM335 ориентирован на работу при -40 до +1000 градусов цельсия. Напряжение на нем будет увеличиваться на 10 мВ вместе с ростом вокруг окружающей температуры. Напряжение с него подается на неинвертирующий вход операционного усилителя LM741. Со стабилитрона 1N4733 на инвертирующий вход микросхемы, через потенциометр, подается опорное напряжение 5.1 В.

В данной схеме потенциометр предназначен для регулирования порога срабатывания вентилятора. Транзистор находится в выходном каскаде усилителя и предназначен для непосредственного управления вентилятором.

Расчет параметров составного транзистора

Коэффициент передачи тока

Для первой схемы (Дарлингтона) [Коэффициент передачи тока

] = ([Коэффициент передачи тока первого транзистора ] + 1) * [Коэффициент передачи тока второго транзистора ]

Для второй схемы (Шиклаи) [Коэффициент передачи тока

] = [Коэффициент передачи тока первого транзистора ] * ([Коэффициент передачи тока второго транзистора ] + 1)

Напряжение насыщения база — эмиттер

Для первой схемы (Дарлингтона) [Напряжение насыщения база — эмиттер при токе базы Iб

] = [Напряжение насыщения база — эмиттер первого транзистора при токе базы Iб ] + [Напряжение насыщения база — эмиттер второго транзистора при токе базы I1 ], где [I1 ] = [ ] * (1 + [Коэффициент передачи тока первого транзистора ]) — [Ток через резистор ]

Для второй схемы (Шиклаи) [Напряжение насыщения база — эмиттер при токе базы Iб

] = [Напряжение насыщения база — эмиттер первого транзистора при токе базы Iб ]

Как видно из формул, напряжение насыщения база — эмиттер во второй схеме намного ниже. Это и есть главное преимущество второй схемы.

Напряжение насыщения коллектор — эмиттер

[Напряжение насыщения коллектор — эмиттер при токе коллектора Iк

] = [Напряжение насыщения база — эмиттер второго транзистора при токе базы Iб ] + [Напряжение насыщения коллектор — эмиттер первого транзистора при токе коллектора I2 ], где [ ] = [ ] / [Коэффициент передачи тока второго транзистора ]

Для первой схемы (Дарлингтона), [I2

] = ([ ] + [Ток через резистор ]) / (1 + 1 / [Коэффициент передачи тока первого транзистора ])

Для второй схемы (Шиклаи), [I2

] = ([ ] + [Ток через резистор ])

Сразу бросается в глаза, что напряжение насыщения коллектор — эмиттер составного транзистора в разы больше напряжения насыщения обычных транзисторов. Действительно, чтобы второй транзистор открылся, нужно подать на его базу напряжение, большее напряжения насыщения база — эмиттер. А это напряжение обычно больше напряжения насыщения коллектор — эмиттер. Кроме того, напряжение подается через первый транзистор, на котором также падает часть напряжения. Вот и получается, что чтобы составной транзистор открылся, между его коллектором и эмиттером должно быть приложено значительное напряжение.

Характеристики

Технические свойства этого биполярника на удивление хороши, даже по сегодняшним меркам. К сожалению, в даташит современного производителя КТ315, представлена только основная информация. В них не найти графиков, отражающих поведение устройство в различных условиях эксплуатации, которыми наполнены современные технические описания на другие подобные устройства от зарубежных производителей.

Максимальные характеристики

Максимальные значения допустимых электрических режимов эксплуатации КТ315 до сих пор впечатляют начинающих радиолюбителей. Например, максимальный ток коллектора может достигать уровня в 100 мА, а рабочая частота у некоторых экземпляров превышает заявленные 250 МГц. Его более дорогие современники из серии КТ2xx/3xx, даже имея металлический корпус, не могли похвастаться такими показателями. КТ315 был долгое время своеобразным техническим лидером, пока ему на смену не пришёл усовершенствованный КТ3102. Рассмотрим максимально допустимые электрические режимы эксплуатации КТ315, в корпусе ТО-92, белорусского ОАО «Интеграл». В конце обозначения таких приборов присутствует цифра «1».

Основные электрические параметры

Будьте внимательны, несмотря на свои достаточно хорошие характеристики, КТ315 не может конкурировать с современными устройствами по некоторым параметрам. Так у современной серии КТ315, как и 50 лет назад, относительно небольшой диапазон рабочих температур от — 45 до + 100°C. А коэффициент шума (КШ) достигает 40 Дб, что уже много для современного устройства, предназначенного для усиления в низкочастотных трактах.

Классификация

Кроме основных параметров, в техническом описании можно найти распределение устройств по группам. Таблица классификации дает представление о параметрах всей серии КТ315. Используя её можно подобрать нужное устройство, путем сравнения основных характеристик всей серии.

Комплементарная пара

У КТ315 имеется комплементарная пара – КТ361. Эти устройства довольно часто применялись вместе, особенно в бестрансформаторных двухтактных схемах. Совместное применение данной пары безусловно вошло в историю российской электроники.

Электрические характеристики

Данные в таблице действетельны при температуре среды Ta = 25°C.

Характеристика Обознач. Параметры при измерениях Значения
Ток коллектора выключения, мкА ICBO UCB = 30 В, IE = 0 ≤ 0,1
Ток базы выключения, мкА IEBO UEB = 5 В, IC =0 ≤ 10
Напряжение насыщения коллектор-эмиттер, В * UCE(sat) IC = 0,5 А, IB = 0,05 А 0,5
Напряжение включения база-эмиттер, В * UBE(ON) IC = 0,5 А, UCE = 2,0 В 1
Рабочее напряжение коллектор-эмиттер, В * UCEO(sus) IC = 0,03 А, IB = 0 80
Статический коэффициент усиления по току * hFE(1) UCE = 2 В, IC = 0,005 А ≥ 25
hFE(2) UCE = 2 В, IC = 0,15 А от 40 до 250
hFE(3) UCE = 2 В, IC = 0,5 А ≥ 25

٭ — Характеристики сняты в импульсном режиме: ширина импульса ≤ 300 мкс, коэффициент заполнения ≤ 1,5 %.

Пара Шиклаи и каскодная схема

Другое название составного полупроводникового триода – пара Дарлингтона. Кроме неё существует также пара Шиклаи. Это сходная комбинация диады основных элементов, которая отличается тем, что включает в себя разнотипные транзисторы.

Что до каскодной схемы, то это также вариант составного транзистора, в котором один полупроводниковый триод включается по схеме с ОЭ, а другой по схеме с ОБ. Такое устройство аналогично простому транзистору, который включён в схему с ОЭ, но обладающему более хорошими показателями по частоте, высоким входным сопротивлением и большим линейным диапазоном с меньшими искажениями транслируемого сигнала.

Технические характеристики

Серию КТ825 относят к полупроводниковым триодам с p-n-p-проводимостью. Но на самом деле они представляют собой устройства состоящее из двух таких структур, собранных в едином корпусе по схеме Дарлингтона. В СССР их ещё называли — составными.

Максимальные эксплуатационные значения

КТ825Г является лучшим по параметрам транзистором в своей серии, если не рассматривать его аналог 2Т825. Он имеет наибольшие значения предельно допустимых режимов эксплуатации среди «собратьев». Рассмотрим их поподробнее:

  • максимальное постоянное напряжение: К-Э — до 90 В; Б-Э – до 5 В;
  • коллекторный ток: постоянный от 20 А; импульсный до 40 А;
  • рассеиваемая мощность на коллекторе: до 125 Вт (с радиатором); до 3 Вт (без теплоотвода);  у кристалла не более 40 Вт;
  • температура: p-n-перехода до +150°С; окружающей среды от -40 до +100 °C.

Электрические характеристики

Электрические параметры КТ825Г тоже неплохие, по сравнению с другими серии. Согласно данным из даташит, он имеет лучшие показатели статического коэффициента передачи тока в схеме с общим эмиттером (H21э) от 600 до 25000 и пробивное напряжение К-Э до 90В. Такие величины H21э обусловлены его составной структурой. Эти и другие характеристики устройства представлены в таблице ниже, исходя из условий его работы указанных в отдельном столбце.

Комплементарная пара

В качестве комплементарной пары во многих технических решениях используется составной КТ827А, имеющий NPN-проводимость.

Советуем Вам проверить информацию о содержании драгоценных металлов в КТ825Г, так как некоторые модели могут иметь ценность даже в нерабочем состоянии, особенно продукция старого образца.

Виды записи

Производители транзисторов применяют два основных типа шифрования – это цветовая и кодовая маркировки. Однако ни один, ни другой не имеют единых стандартов. Каждый завод, производящий полупроводниковые приборы (транзисторы, диоды, стабилитроны и т. д.), принимает свои кодовые и цветовые обозначения. Можно встретить транзисторы одной группы и типа, изготовленные разными заводами, и маркированы они будут по-разному. Или наоборот: элементы будут различными, а обозначения на них – идентичными. В таких случаях различать их можно только по дополнительным признакам. Например, по длине выводов эмиттера и коллектора либо по окраске противоположной (или торцевой) поверхности. Маркировка полевых транзисторов ничем не отличается от меток на других приборах. Такая же ситуация и с полупроводниковыми элементами зарубежного производства: каждым заводом-изготовителем применяются свои типы обозначений.

Транзисторы КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315И, КТ315Ж.

Т ранзисторы КТ315 — кремниевые, маломощные высокочастотные, структуры — n-p-n. Корпус пластиковый — желтого, красного, темно — зеленого, оранжевого цветов. Масса — около 0,18г. Маркировка буквенно — цифровая, либо буквенная. Цоколевка легко определяется с помощью буквы, обозначающей подкласс транзистора. Она распологается напротив вывода эмиттера. Вывод коллектора — посередине, базы — оставшийся, крайний.

Наиболее широко распространенный отечественный транзистор. При изготовлении КТ315 впервые массово была применена планарно — эпитаксиальная технология. На пластине из материала n — проводимости формировался участок базы, проводимостью — p, затем, уже в нем — n участок эмиттера. Эта технология способствовала значительному удешевлению производства, при меньшем разбросе параметрических характеристик, по тому времени — довольно высоких.

Благодаря плоской форме корпуса и выводов КТ315 хорошо подходит для поверхностного монтажа. Таким образом, применение КТ315 позволило в свое время значительно уменьшить размеры элементов ТТЛ советских ЭВМ второго поколения. Область применения КТ315 черезвычайно широка, кроме элементов логики это — низкочастотные, среднечастотные, высокочастотные усилители, генераторы, все что сотавляло основу огромного количества бытовых и промышленных электронных устройств советской эпохи.

Разработка КТ315 была отмечена в 1973 г. Государственной премией СССР. Примечательно, что КТ315 до сих пор производятся в Белоруссии, в корпусе ТО-92.

Наиболее важные параметры.

Граничная частота передачи тока — 250 МГц. Коэффициент передачи тока у транзисторов КТ315А, КТ315В, КТ315Д — от 20 до 90. У транзисторов КТ315Б,КТ315Г,КТ315Е — от 50 до 350. У транзистора КТ315Ж, — от 30 до 250. У транзистора КТ315Ж, не менее 30.

Максимальное напряжение коллектор — эмиттер. транзистора КТ315А — 25в. Транзистора КТ315Б — 20в, транзистора КТ315Ж — 15в. У транзисторов КТ315В, КТ315Д — 40 в. у транзисторов КТ315Г, КТ315Е — 35 в. У транзистора КТ315И — 60 в.

Напряжение насыщения база — эмиттер при токе коллектора 20 мА, а токе базы — 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 1,1 в. У транзисторов КТ315Д, КТ315Е — 1,5 в. У транзисторов КТ315Ж — 0,9 в.

Напряжение насыщения коллектор — эмиттер при токе коллектора 20 мА, а токе базы 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 0,4 в. У транзисторов КТ315Д, КТ315Е — 1 в. У транзисторов КТ315Ж — 0,5 в.

Максимальное напряжение эмиттер-база — 6 в.

Обратный ток коллектор-эмиттер при предельном напряжении : У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 1 мкА. У транзисторов КТ315Ж — 10 мкА. У транзисторов КТ315И — 100 мкА.

Обратный ток коллектора при напряжении колектор-база 10в — 1 мкА.

Максимальный ток коллектора. У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 100 мА. У транзисторов КТ315Ж, КТ315И — 50 мА.

Емкость коллекторного перехода при напряжении коллектор-база 10 в, не более: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г,КТ315Д, КТ315Е, КТ315И — 7 пФ. У транзисторов КТ315Ж — 10 пФ.

Рассеиваемая мощность коллектора.

У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 150 мВт. У транзисторов КТ315Ж, КТ315И — 100 мВт.

Зарубежные аналоги транзисторов КТ315.

Прямых зарубежных аналогов у КТ315 нет. Наиболее близкий аналог(полное совпадение параметров) транзистора КТ315А — BFP719.

Аналог КТ315Б — 2SC633. Параметры этих транзисторов в основном совпадают, но у 2SC633 несколько ниже граничная частота передачи тока — 200МГц.

Аналог КТ315Г — BFP722, КТ315Д — BC546B

Схемы с использованием TL431

Микросхема может использоваться во многих разных схемах блоков питания. Это могут быть как регулируемые блоки питания, так и зарядные устройства к аккумуляторам. Давайте разберем несколько базовых, типовых схем, которые можно модернизировать, и на базе которых можно создавать свои замыслы и творения.

Стабилизатор напряжения на TL431 (2.5-36В, 100mA)

Данная схема позволяет заменить обыкновенный стабилитрон. Вы можете менять выходное напряжение путем изменения сопротивления резисторов R1 и R2. Чтобы провести расчет сопротивления, рекомендуем прибегнуть к использованию формулы, указанной ниже:

Стабилизатор напряжения с увеличенным максимальным током (2.5-36В)

Максимальный выходной ток TL431 равен 100мА. Однако, если вашему проекту нужен больший показатель выходного тока, то советуем вам использовать транзистор: тогда максимальный ток будет зависеть от его характеристик. Формула для расчета сопротивлений резисторов остается такой же.

Подобные схемы часто используются с другими микросхемами.К сожалению, большинство из них просто не могут пропускать высокий ток, поэтому, чтобы решить такую проблему, в дело вступает управляющий транзистор. В таком случае максимальный ток ограничивается его свойствами. Главная задача здесь — правильный подбор транзистора под управляющее напряжение на его базе.

Лабораторный блок питания на TL431 с защитой

Данная схема представляет собой регулируемый блок питания, который способен выдавать до 30Вт. И помимо этого имеет встроенную защиту от перегрузки. В случае, если ток начнет превышать допустимое значение на транзисторе Т2, то на ЛБП произойдет прекращение подачи напряжения, о чем будет сигнализировать загоревшийся светодиод.

Не стоит забывать использовать охлаждение в виде радиатора, ведь компоненты во время пиковых нагрузок будут быстро нагреваться, и со временем при частых перегревах, выходить из строя.

Стабилизатор тока на TL431 (Светодиодный драйвер)

Чаще всего стабилизаторы тока используются для запитывания светодиодов и светодиодных лент. Схема тут элементарная — вам понадобятся всего лишь пара резисторов и один транзистор.

Индикатор напряжения

Схема может понадобиться, когда вам необходимо следить за тем, чтобы напряжение не выходило за верхние и нижние пределы. Эти пределы задаются сопротивлением резисторов, по формуле, указанной ниже.

Данную схему можно модернизировать путем добавления пищалок или других звуковых устройств. Таким образом точно не получится пропустить сигнал о неправильном напряжении.

Таймер задержки на TL431

Универсальная микросхема, на которой есть возможность реализовать даже схему таймера задержки. Все, что вам понадобится — это пара резисторов и конденсатор. Их номиналы необходимо рассчитать по формуле, чтобы получить требуемое время задержки (формула указана ниже).

Такая схема возможна благодаря очень низкому показателю входного тока (4мкА). Во время замыкания главного контакта, транзистор начинает производить зарядку. После достижения показателя в 2.5В он открывается, и ток при содействии оптопаровому светодиоду (оптрону) начинает течь, от чего на внешней цепи происходит замыкание.

Зарядное устройство для литиевых аккумуляторах на TL431 и LM317

Эта простейшая схема позволяет правильно заряжать литиевые аккумуляторы. В этой зарядке TL431 используется в качестве источника опорного напряжения, а LM317 в качестве источника тока. Устройство заряжает аккумуляторы методом CC CV, означает, как все знают, постоянный ток (Constant Current), постоянное напряжение (Constant Voltage).

Входное напряжение для этой схемы — 9-20В. Сначала аккумулятор заряжается постоянным током, который поддается изменению, меняя сопротивление резистора R5. После того, как аккумулятор достигнет напряжения около 4.2В, он начинает заряжаться постоянным напряжением.

Учтите, что очень важно перед использованием настроить устройство: без нагрузки необходимо подстроить переменный резистор RV1 так, чтобы на выходе напряжение было равно 4.2 Вольта.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: