6.2. Режимы работы усилительного элемента в выходных каскадах усиления
УЭ в ВКУ работают в режиме класса “А” или “В”. Для режима класса “А” РТ выбирается на середине линейного участка УЭ. Этот режим чаще используются в предварительных каскадах усиления и при жестких требованиях к нелинейным искажениям и в ВКУ, в частности усилителях МСП.
для этого режима:
и КПД равен:
Практически ηВКУ.А ≈ 30%, причем величины ψА, ξА и ηВКУ.А зависят от уровня сигнала.
Режим класса “В” характеризуется более сложной схемой, т.к. используется не менее двух УЭ; УЭ работают поочерёдно, а РТ выбирается на оси управляющих напряжений. Этот режим характеризуется также высоким КПД до 78,5% и большими нелинейными искажениями, по сравнению с режимом класса “А”.
Выпрямительное устройство 50ВУК-120М
Предназначено для питания постоянным током ксеноновых ламп мощностью 3 кВт, установленных в осветителях кинопроекторов типа 23КПК и «Ксенон-ЗА».
Номинальный выпрямленный ток — 120 А, напряжение — 25 В. Ток в цепи нагрузки регулируется в пределах 60 — 130 А.
Главный выпрямительный мост собран по шестифазной схеме на кремниевых вентилях В2-200-5Б. Для защиты вентилей от перенапряжения параллельно им включены селеновые выпрямители 30ГД4А. Цепь управления для регулирования тока нагрузки состоит из системы внешнего подмагничивания, куда входят обмотки дросселей, транзисторный усилитель, обмотки магнитного усилителя-датчика тока нагрузки. Питание системы подмагничивания осуществляется от селенового выпрямителя 75КТ6Г.
Предусмотрены два режима работы. В основном режиме автоматически поддерживается установленный ток нагрузки, а в другом — осуществляется дистанционное регулирование тока нагрузки. При работе в основном режиме обмотки подмагничивания дросселей питаются через транзисторный усилитель, который стабилизирует ток нагрузки, при этом имеющийся в схеме магнитный усилитель является его датчиком. Для получения повышенного напряжения в момент розжига ксеноновой лампы (блок подпитки) служит селеновый выпрямитель 75КТ18Г.
Выпрямительное устройство рассчитано на работу с повторно-кратковременными перерывами (через каждые 50 — 60 мин работы).
Транзистор КТ829 — DataSheet
Цоколевка транзистора КТ829 |
Цоколевка транзистора КТ829(Т-М) |
Описание
Транзисторы кремниевые мезапланарные составные универсальные низкочастотные мощные. Предназначены для работы в усилителях низкой частоты, ключевых схемах. Выпускаются в пластмассовом корпусе с жесткими выводами. Обозначение типа приводится на корпусе. Масса транзистора не более 2 г.
Параметр | Обозначение | Маркировка | Условия | Значение |
Ед. изм. |
Аналог | КТ829А | BD267B, TIP122, BD901, BDW23C *2, BDW73C, BDW63C *2, 2SD1128 *2, 2SD1740 *2, BD267A *2 | |||
КТ829Б |
BD267A, BD263, TIP121,
BD899A, BD899, BDW23B *2, BDW73B *2, BD267 *2 |
||||
КТ829В |
BD331, TIP120, BD897A,
BD897, BDW23A, ТIР120 *2 |
||||
КТ829Г |
BD665, BD675, BD895A,
BD895, BDW23, BDW73, BDW63 *2, BD695 *1 |
||||
Структура | — | n-p-n | |||
Максимально допустимая постоянная рассеиваемая мощность коллектора | PK max,P*K, τ max,P**K, и max | КТ829А | — | 60* | Вт |
КТ829Б | — | 60* | |||
КТ829В | — | 60* |
КТ829Г
—
60*
КТ829АТ
—
50
КТ829АП
—
50
КТ829АМ
—
60
Граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером
fгр, f*h31б, f**h31э, f***max
КТ829А
—
≥4
МГц
КТ829Б
—
≥4
КТ829В
—
≥4
КТ829Г
—
≥4
КТ829АТ
—
≥4
КТ829АП
—
≥4
КТ829АМ
—
≥4
Пробивное напряжение коллектор-база при заданном обратном токе коллектора и разомкнутой цепи эмиттера
UКБО проб., U*КЭR проб., U**КЭО проб.
КТ829А
1к
100*
В
КТ829Б
1к
80*
КТ829В
1к
60*
КТ829Г
1к
45*
КТ829АТ
—
100
КТ829АП
—
160
КТ829АМ
—
240
Пробивное напряжение эмиттер-база при заданном обратном токе эмиттера и разомкнутой цепи коллектора
UЭБО проб.,
КТ829А
—5
В
КТ829Б
—5
КТ829В
—5
КТ829Г
—5
КТ829АТ
—5
КТ829АП
—
5
КТ829АМ
—
5
Максимально допустимый постоянный ток коллектора
IK max, I*К , и max
КТ829А
—
8(12*)
А
КТ829Б
—
8(12*)
КТ829В
—
8(12*)
КТ829Г
—
8(12*)
КТ829АТ
—
5
КТ829АП
—
5
КТ829АМ
—
8
Обратный ток коллектора — ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера
IКБО, I*КЭR, I**КЭO
КТ829А
100 В
≤1.5*
мА
КТ829Б
80 В
≤1.5*
КТ829В
60 В
≤1.5*
КТ829Г
60 В
≤1.5*
КТ829АТ
—
—
КТ829АП
—
—
КТ829АМ
—
—
Статический коэффициент передачи тока транзистора в режиме малого сигнала для схем с общим эмиттером
h21э, h*21Э
КТ829А
3 В; 3 А
≥750*
КТ829Б
3 В; 3 А
≥750*
КТ829В
3 В; 3 А
≥750*
КТ829Г
3 В; 3 А
≥750*
КТ829АТ
—
≥1000
КТ829АП
—
≥700
КТ829АМ
—
400…3000
Емкость коллекторного перехода
cк, с*12э
КТ829А
—
≤120
пФ
КТ829Б
—
≤120
КТ829В
—
≤120
КТ829Г
—
≤120
КТ829АТ
—
—
КТ829АП
—
—
КТ829АМ
—
—
Сопротивление насыщения между коллектором и эмиттером
rКЭ нас, r*БЭ нас, К**у.р.
КТ829А
—
≤0.57
Ом, дБ
КТ829Б
—
≤0.57
КТ829В
—
≤0.57
КТ829Г
—
≤0.57
КТ829АТ
—
≤0.3
КТ829АП
—
≤0.25
КТ829АМ
—
≤0.66
Коэффициент шума транзистора
Кш, r*b, P**вых
КТ829А
—
—
Дб, Ом, Вт
КТ829Б
—
—
КТ829В
—
—
КТ829Г
—
—
КТ829АТ
—
—
КТ829АП
—
—
КТ829АМ
—
—
Постоянная времени цепи обратной связи на высокой частоте
τк, t*рас, t**выкл, t***пк(нс)
КТ829А
——
пс
КТ829Б
——
КТ829В
——
КТ829Г
——
КТ829АТ
——
КТ829АП
——
КТ829АМ
——
Описание значений со звездочками(*,**,***) смотрите в таблице параметров биполярных транзисторов.
*1 — аналог по электрическим параметрам, тип корпуса отличается.
*2 — функциональная замена, тип корпуса аналогичен.
*3 — функциональная замена, тип корпуса отличается.
Входные характеристики |
Зависимость статического коэффициента передачи тока от тока коллектора |
Зависимость напряжения насыщения коллектор — эмиттер от Iк/Iб |
Зависимость максимально допустимого напряжения коллектор-эмиттер от сопротивления база-эмиттер |
Зависимость максимально допустимой мощности рассеивания коллектора от температуры корпуса |
Область максимальных режимов |
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Область применения транзисторов 13001
Транзисторы серии 13001 разработаны специально для применения в преобразовательных устройствах небольшой мощности в качестве ключевых (переключающих) элементов.
- сетевые адаптеры мобильных устройств;
- электронная пускорегулирующая аппаратура люминесцентных ламп малой мощности;
- электронные трансформаторы;
- другие импульсные устройства.
Нет принципиальных ограничений на использование транзисторов 13001 в качестве транзисторных ключей. Также можно применять данные полупроводниковые приборы в усилителях низкой частоты в случаях, где не требуется особое усиление (коэффициент передачи по току у серии 13001 по современным меркам невелик), но в этих случаях не реализуются довольно высокие параметры этих транзисторов по рабочему напряжению и их высокое быстродействие.
Лучше в этих случаях применить более распространенные и дешевые типы транзисторов. Также при построении усилителей надо помнить, что комплементарная пара у транзистора 31001 отсутствует, поэтому с организацией двухтактного каскада могут быть проблемы.
На рисунке приведен характерный пример использования транзистора 13001 в сетевом зарядном устройстве для аккумулятора переносного устройства. Кремниевый триод включен в качестве ключевого элемента, формирующего импульсы на первичной обмотке трансформатора ТР1. Он с большим запасом выдерживает полное выпрямленное сетевое напряжение и не требует дополнительных схемотехнических мер.
Температурный профиль для пайки бессвинцовым припоем
При пайке транзисторов надо соблюдать определенную осторожность, не допуская излишнего нагрева. Идеальный температурный профиль указан на рисунке и состоит из трех этапов:
- этап предварительного нагрева длится около 2 минут, за это время транзистор прогревается от 25 до 125 градусов;
- собственно пайка длится около 5 секунд при максимальной температуре 255 градусов;
- заключительный этап – расхолаживание со скоростью от 2 до 10 градусов в секунду.
Этот график сложно соблюсти в домашних условиях или в мастерской, да и не так это важно при демонтаже-монтаже единичного транзистора. Главное – не превышать максимально допустимую температуру пайки
Транзисторы 13001 имеют репутацию достаточно надежных изделий, и при условиях эксплуатации, не выходящих за установленные пределы, могут прослужить долго без отказов.
Транзистор — устройство, виды, применение
Описание, устройство и принцип работы полевого транзистора
Что такое биполярный транзистор и какие схемы включения существуют
Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142
Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Характеристики биполярного транзистора.
Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.
И первая на очереди – входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:
I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const
В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):
Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.
Переходим ко второй крайне важной характеристике биполярного транзистора – выходной! Выходная характеристика – это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы. I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const. I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const
I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const
Для нее также указывается семейство характеристик для разных значений тока базы:
Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения – изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .
Для наглядности можно изобразить эти режимы на семействе выходных характеристик:
Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.
Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано
Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно – при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta, несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:
I_к = \beta I_б
Двигаемся дальше!
На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина – эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.
В этом режиме основные носители заряда начинают двигаться из коллектора в базу – навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.
Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!
И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.
Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:
Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.
Характеристики популярных аналогов
Наименование производителя: KT972A
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 8 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 60 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 5 V
- Макcимальный постоянный ток коллектора (Ic): 4 A
- Предельная температура PN-перехода (Tj): 150 °C
- Граничная частота коэффициента передачи тока (ft): 200 MHz
- Статический коэффициент передачи тока (hfe): 750
Наименование производителя: WW263
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 65 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 100 V
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 100 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 5 V
- Макcимальный постоянный ток коллектора (Ic): 10 A
- Предельная температура PN-перехода (Tj): 150 °C
- Ёмкость коллекторного перехода (Cc): 200 pf
- Статический коэффициент передачи тока (hfe): 1000
- Корпус транзистора: TO220
Наименование производителя: U2T833
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 60 W
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 300 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 12 V
- Макcимальный постоянный ток коллектора (Ic): 5 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
- Аналоги (замена) для U2T833
Наименование производителя: U2T832
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 60 W
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 200 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 12 V
- Макcимальный постоянный ток коллектора (Ic): 5 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
Наименование производителя: U2T823
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 35 W
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 300 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 12 V
- Макcимальный постоянный ток коллектора (Ic): 5 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
Наименование производителя: U2T6O1
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 50 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 80 V
- Макcимальный постоянный ток коллектора (Ic): 20 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
- Корпус транзистора: TO66
Наименование производителя: U2T605
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 50 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 150 V
- Макcимальный постоянный ток коллектора (Ic): 20 A
- Предельная температура PN-перехода (Tj): 200 °C
- Статический коэффициент передачи тока (hfe): 1000
- Корпус транзистора: TO66
Наименование производителя: TTD1415B
- Маркировка: D1415B
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 25 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 120 V
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 100 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
- Макcимальный постоянный ток коллектора (Ic): 7 A
- Предельная температура PN-перехода (Tj): 150 °C
- Статический коэффициент передачи тока (hfe): 1000
- Корпус транзистора: TO220SIS
Усилитель на КТ315
Для создания усилителя, представленного на схеме, нужен один КТ315, один конденсатор (1 мкФ), один резистор и mini Jack.
На схеме видно, что отрицательное питание и один из двух ходов mini Jack надо припаять к эмиттеру (левая ножка).
Ко второму ходу mini Jack присоединяем “плюсом” конденсатор, а его “минус” припаиваем к базе. Дальше мы переходим к резистору. Одна его сторона должна быть прикреплена к первому колоночному проводу (другой ход колоночного провода — к коллектору), а второй — к отрицательному ходу конденсатора. К соединению провода от колонки и резистора добавляется плюсовой провод.
Теперь можно вставлять разъем в колонку и наслаждаться улучшенным и громким звуком.
Архив блога
-
►
2020
(2)
►
февраля
(1)
►фев 09
(1)►
января
(1)
►янв 19
(1)
-
►
2019
(11)
►
июня
(1)
►июн 29
(1)►
апреля
(2)
►апр 30
(1)►
апр 26
(1)►
февраля
(5)
►фев 27
(1)►
фев 24
(1)►
фев 16
(1)►
фев 12
(1)►
фев 07
(1)►
января
(3)
►янв 27
(1)►
янв 25
(1)►
янв 15
(1)
-
►
2018
(35)
►
декабря
(1)
►дек 01
(1)►
ноября
(1)
►ноя 18
(1)►
октября
(4)
►окт 24
(1)►
окт 09
(1)►
окт 06
(1)►
окт 04
(1)►
сентября
(4)
►сен 18
(4)►
июля
(6)
►июл 31
(5)►
июл 03
(1)►
мая
(2)
►мая 24
(1)►
мая 17
(1)►
апреля
(5)
►апр 25
(1)►
апр 22
(1)►
апр 19
(1)►
апр 01
(2)►
марта
(5)
►мар 29
(1)►
мар 10
(1)►
мар 06
(1)►
мар 05
(2)►
февраля
(2)
►фев 25
(1)►
фев 12
(1)►
января
(5)
►янв 27
(1)►
янв 18
(1)►
янв 17
(2)►
янв 09
(1)
-
►
2017
(98)
►
декабря
(10)
►дек 24
(2)►
дек 06
(1)►
дек 03
(2)►
дек 02
(1)►
дек 01
(4)►
ноября
(35)
►ноя 29
(1)►
ноя 22
(1)►
ноя 19
(2)►
ноя 16
(20)►
ноя 14
(9)►
ноя 13
(2)►
октября
(9)
►окт 23
(1)►
окт 21
(1)►
окт 20
(1)►
окт 17
(3)►
окт 13
(2)►
окт 08
(1)►
сентября
(8)
►сен 22
(1)►
сен 18
(1)►
сен 13
(2)►
сен 12
(1)►
сен 09
(1)►
сен 04
(1)►
сен 02
(1)►
августа
(1)
►авг 13
(1)►
июля
(1)
►июл 09
(1)►
июня
(1)
►июн 22
(1)►
мая
(3)
►мая 23
(1)►
мая 22
(1)►
мая 16
(1)►
апреля
(3)
►апр 09
(2)►
апр 07
(1)►
марта
(11)
►мар 31
(1)►
мар 25
(1)►
мар 23
(1)►
мар 18
(1)►
мар 17
(2)►
мар 14
(1)►
мар 03
(1)►
мар 02
(2)►
мар 01
(1)►
февраля
(6)
►фев 28
(1)►
фев 26
(1)►
фев 24
(2)►
фев 20
(1)►
фев 02
(1)►
января
(10)
►янв 28
(3)►
янв 24
(2)►
янв 21
(1)►
янв 19
(1)►
янв 14
(1)►
янв 13
(2)
-
►
2016
(184)
►
декабря
(8)
►дек 24
(1)►
дек 23
(1)►
дек 22
(1)►
дек 20
(1)►
дек 15
(1)►
дек 14
(1)►
дек 13
(1)►
дек 11
(1)►
ноября
(24)
►ноя 30
(1)►
ноя 29
(3)►
ноя 28
(1)►
ноя 26
(3)►
ноя 25
(1)►
ноя 21
(2)►
ноя 19
(2)►
ноя 15
(1)►
ноя 14
(3)►
ноя 12
(2)►
ноя 10
(1)►
ноя 08
(1)►
ноя 06
(2)►
ноя 04
(1)►
октября
(7)
►окт 31
(1)►
окт 24
(1)►
окт 19
(2)►
окт 11
(2)►
окт 02
(1)►
сентября
(23)
►сен 24
(2)►
сен 23
(1)►
сен 22
(8)►
сен 20
(2)►
сен 16
(1)►
сен 15
(1)►
сен 12
(1)►
сен 10
(2)►
сен 03
(3)►
сен 01
(2)►
августа
(7)
►авг 06
(4)►
авг 03
(2)►
авг 01
(1)►
июля
(28)
►июл 31
(2)►
июл 30
(3)►
июл 28
(1)►
июл 24
(1)►
июл 22
(1)►
июл 21
(2)►
июл 20
(2)►
июл 18
(4)►
июл 15
(3)►
июл 10
(1)►
июл 07
(1)►
июл 06
(3)►
июл 05
(1)►
июл 04
(2)►
июл 01
(1)►
июня
(11)
►июн 27
(1)►
июн 26
(2)►
июн 19
(2)►
июн 16
(1)►
июн 13
(1)►
июн 06
(2)►
июн 05
(1)►
июн 03
(1)►
мая
(22)
►мая 31
(5)►
мая 27
(2)►
мая 26
(1)►
мая 24
(2)►
мая 22
(3)►
мая 21
(2)►
мая 16
(1)►
мая 15
(1)►
мая 14
(1)►
мая 09
(2)►
мая 04
(1)►
мая 01
(1)►
апреля
(9)
►апр 23
(2)►
апр 16
(1)►
апр 13
(1)►
апр 09
(1)►
апр 04
(1)►
апр 02
(3)►
марта
(25)
►мар 26
(1)►
мар 22
(1)►
мар 21
(3)►
мар 20
(5)►
мар 19
(3)►
мар 17
(1)►
мар 12
(1)►
мар 09
(1)►
мар 08
(1)►
мар 07
(2)►
мар 06
(3)►
мар 05
(3)►
февраля
(10)
►фев 28
(1)►
фев 24
(1)►
фев 22
(1)►
фев 20
(1)►
фев 10
(1)►
фев 06
(2)►
фев 02
(3)►
января
(10)
►янв 30
(1)►
янв 26
(1)►
янв 24
(1)►
янв 20
(1)►
янв 19
(4)►
янв 09
(1)►
янв 06
(1)
-
►
2015
(125)
►
декабря
(16)
►дек 30
(4)►
дек 24
(1)►
дек 21
(1)►
дек 20
(5)►
дек 13
(3)►
дек 05
(1)►
дек 04
(1)►
ноября
(35)
►ноя 27
(1)►
ноя 25
(1)►
ноя 22
(3)►
ноя 21
(7)►
ноя 19
(1)►
ноя 18
(1)►
ноя 17
(2)►
ноя 16
(3)►
ноя 15
(3)►
ноя 14
(6)►
ноя 11
(2)►
ноя 09
(3)►
ноя 06
(2)►
октября
(8)
►окт 31
(1)►
окт 23
(3)►
окт 22
(3)►
окт 08
(1)►
сентября
(5)
►сен 29
(1)►
сен 28
(1)►
сен 18
(1)►
сен 17
(1)►
сен 11
(1)►
августа
(10)
►авг 21
(1)►
авг 20
(5)►
авг 18
(1)►
авг 16
(1)►
авг 07
(2)►
июля
(4)
►июл 31
(1)►
июл 10
(1)►
июл 06
(1)►
июл 01
(1)►
июня
(9)
►июн 30
(1)►
июн 26
(1)►
июн 25
(1)►
июн 22
(1)►
июн 19
(1)►
июн 18
(1)►
июн 13
(1)►
июн 09
(1)►
июн 01
(1)►
мая
(11)
►мая 27
(1)►
мая 25
(1)►
мая 23
(2)►
мая 20
(1)►
мая 17
(1)►
мая 16
(2)►
мая 11
(1)►
мая 05
(1)►
мая 04
(1)►
апреля
(5)
►апр 29
(1)►
апр 19
(2)►
апр 16
(1)►
апр 06
(1)►
марта
(4)
►мар 26
(2)►
мар 23
(1)►
мар 10
(1)►
февраля
(6)
►фев 28
(1)►
фев 22
(1)►
фев 14
(1)►
фев 10
(2)►
фев 01
(1)►
января
(12)
►янв 17
(1)►
янв 13
(2)►
янв 12
(1)►
янв 09
(1)►
янв 06
(2)►
янв 05
(1)►
янв 04
(1)►
янв 03
(2)►
янв 01
(1)
-
▼
2014
(232)
►
декабря
(13)
►дек 31
(1)►
дек 27
(1)►
дек 26
(1)►
дек 23
(1)►
дек 22
(1)►
дек 20
(1)►
дек 19
(1)►
дек 14
(2)►
дек 13
(1)►
дек 06
(1)►
дек 01
(2)►
ноября
(5)
►ноя 30
(3)►
ноя 19
(1)►
ноя 03
(1)►
октября
(1)
►окт 16
(1)►
сентября
(1)
►сен 21
(1)►
августа
(5)
►авг 19
(1)►
авг 11
(1)►
авг 08
(3)►
июня
(15)
►июн 30
(1)►
июн 27
(1)►
июн 24
(3)►
июн 22
(2)►
июн 21
(3)►
июн 05
(2)►
июн 04
(1)►
июн 03
(2)►
мая
(2)
►мая 26
(1)►
мая 20
(1)►
апреля
(5)
►апр 17
(2)►
апр 13
(1)►
апр 12
(1)►
апр 02
(1)►
марта
(3)
►мар 10
(2)►
мар 03
(1)►
февраля
(10)
►фев 19
(1)►
фев 04
(8)►
фев 01
(1)-
▼
января
(172)
►
янв 26
(20)
▼
янв 25
(16)►
янв 20
(2)
►
янв 19
(30)
►
янв 18
(10)
►
янв 17
(41)
►
янв 10
(13)
►
янв 06
(40)
-
Заключение
Усилитель Догерти – идеальный кандидат для максимизации эффективности усилителя мощности при одновременном сохранении линейности усилителя (точного воспроизведения сигнала) для сигналов с высоким отношением пиковой мощности к средней. Если схема модуляции основана на некоторой форме мультиплексирования с частотным разделением или на амплитудной модуляции, то схему Догерти можно рассмотреть для использования в усилителе мощности. Если ваше приложение использует схемы модуляции постоянной несущей (FM, FSK, PSK и т.д.), то усилитель Догерти вам не подходит. В этом случае может оказаться подходящей схема класса C или одна из схем импульсных усилителей. Подведем итоги в виде плюсов и минусов усилителя Догерти.
Достоинства:
- хороший способ повысить эффективность усилителя при одновременном достижении хорошего качества сигнала;
- снижает интермодуляционные искажения в сигналах с высоким отношением пиковой мощности к средней, по сравнению с классом AB, работающим вблизи точки компрессии;
- может использоваться как в усилителях малой мощности (портативные), так и в усилителях большой мощности (например, вещательные);
- предоставляет множество способов оптимизации для различных приложений (смещение, фазировка);
- симметричная входная цепь снижает изменение и величину обратных потерь в рабочем диапазоне мощности.
Недостатки:
- повышенная сложность схемы по сравнению с классической схемой усилителя класса AB;
- сложно подстроить все параметры, чтобы найти лучшую рабочую точку;
- паразитные элементы усложняют конструкцию реального усилителя;
- уровни входного сигнала изменяют рабочие характеристики (это верно и для других типов усилителей больших сигналов);
- коэффициент усиления усилителя Догерти ниже (часто примерно на 3 дБ ниже), чем у соответствующего усилителя класса AB, из-за деления мощности на входе, необходимого для усилителя несущей и пикового усилителя.