Принцип функционирования стабилизационных диодов
Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.
Стабилитрон и диод
Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г. Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.
Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.
SMD маркировка электрических элементов
Принцип нанесения обозначений состоит в зашифрованной передаче сведений о размерах и электрических параметрах чипа. Существует условное деление по количеству выводов и величине корпуса элементов:
Количество выводов | Маркировка корпуса по возрастанию размера | Краткое описание |
Двухконтактные | SOD (например, SOD128, SOD323 и т.п.) или WLCSP2 | Пассивные чипы цилиндрической или квадратной формы, танталовые конденсаторы, диоды |
Трехконтактные | DPAK, D2PAK, D3PAK | Автор данного корпуса — компания Моторола. Все элементы имеют одинаковую форму, но разный размер. Используются для полупроводниковых элементов, выделяющих тепловую энергию |
Четырехконтактные и более | WLCSP(N) (литера N обозначает число выводов), SOT, SOIC, SSOP, CLCC, LQFP, DFN,DIP / DIL,Flat Pack,TSOP,ZIP | Контакты этих чипов размещены по двум противоположным боковым сторонам корпуса |
Элементы с числом контактов более четырех | LCC, PLCC, QFN, QFP, QUIP | Выводы расположены по всем четырем сторонам корпуса |
Выводы размещены в виде решетки | BGA, uBGA | Микросхемы, предназначенные для пайки с помощью специальной пасты |
Безвыводные элементы | μBGA, LFBGA | Оснащены только контактными пластинками или каплями припоя |
Чип конденсаторы
Существуют два основных типа конденсаторов — электролитические (корпус имеет форму цилиндра) и керамические или танталовые (корпус выполнен в виде параллелепипеда). На маркировке электролитов всегда присутствуют значения емкости и напряжения, а на керамических образцах — нет. Минус (катод) электролитов обозначен полоской, расположенной на верхней стороне корпуса.
Маркировка SMD резисторов
Маркировка представлена несколькими знаками — цифрами и буквами. Две первые цифры означают номинал, а третья (и четвертая) — порядок, или количество нолей. Например, число 322 означает 3200 Ом или 3,2 кОм. Иногда используется разделитель R, играющий роль запятой. Так, обозначение 3R2 значит 3,2 кОм. Или 0R32 — 0,32 кОм.
Есть специальные резисторы, выполняющие функции предохранителей или перемычек. У них нулевой номинал сопротивления.
Размеры SMD устройств стандартизированы и связаны с маркировкой. Так, чипы диодов, резисторов или конденсаторов типоразмера 0805 имеют параметры 0,6 × 0,8 × 0,23 дюйма (длина-ширина-высота).
SMD индуктивности
Форма и размеры корпусов дросселей и катушек индуктивности имеют те же величины, что и у резисторов или конденсаторов. Обозначение состоит из 4 цифр. Две первые — длина, другие — ширина чипа, выраженные в десятых долях дюйма. Например, маркировка дросселя 0805 значит, что его длина — 0,08, а ширина — 0,05 дюйма.
SMD диоды и транзисторы
Диодные чипы могут быть выполнены в виде бочонка или параллелепипеда (брикета). Все размеры полностью соответствуют параметрам резисторов, что упрощает разработку печатных плат. Учитывая специфику работы диодов, для которых необходимо соблюдать полярность, на отрицательном выводе или рядом с ним имеется полоска. Она обозначает катод, что позволяет избежать ошибок при монтаже.
На поверхности чипа может находиться только код, который не дает полной информации о параметрах детали. Поэтому существуют специальные информационные массивы — datasheet, располагающие сведениями о всех параметрах и возможностях элементов. Если необходимы полные данные о свойствах, которыми обладают транзисторы, datasheet дает возможность получить подробную информацию.
Используются корпуса двух типов:
- SOT;
- DPAK.
Помимо транзисторов в таком формате могут выпускаться диодные сборки, использующиеся в выпрямителях и драйверах.
Кодовая маркировка электролитических конденсаторов для поверхностного монтажа
Для конденсаторов таких фирм как «Panasonic», «Hitachi» и др. маркировка осуществляется 3-мя основными способами:
1. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
При такой маркировки код содержит 2 или 3 символа по ним можно узнать номинальную емкость и рабочее напряжение. Буквы означают напряжение и емкость, цифра показываем множитель. Если маркировка содержит 2 символа, то рабочее напряжение не указывается. Соответствие кода маркировки и значение емкости можно посмотреть в таблице ниже:
Код Емкость Напряжение
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
2. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей.
Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
3. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение.
Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
- Staticvoid
- 1 Авг 2020
- 1 комментарий
- smd
- конденсатор
Что представляет собой данный элемент электрических схем
Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.
Вольт-амперная характеристика стабилитрона
Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.
Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.
Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики. Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен. Стабисторы, как и smd, производятся зачастую из кремния. Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:
- UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
- ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
- IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
- IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
- IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.
Такая маркировка важна при выборе элемента под определенную электросхему.
Search Stock
Infineon Technologies AG
|
|||||||||||
Distributors | Part | Package | Stock | Lead Time | Min Order Qty | Price | Buy | ||||
Arrow Electronics (3) |
BCW68HE6327HTSA1 |
225,000 | 6 Weeks | 3,000 |
|
Buy Now |
|||||
BCW68HE6327HTSA1 |
4 Weeks | 42,000 |
|
Get Quote |
|||||||
BCW68HE6327HTSA1 |
4 Weeks | 42,000 |
|
Get Quote |
|||||||
Verical (2) |
BCW68HE6327HTSA1 |
225,000 | 3,000 |
|
Buy Now |
||||||
BCW68HE6327HTSA1 |
210,000 | 42,000 |
|
Buy Now |
|||||||
Avnet EBV |
BCW68HE6327HTSA1 |
5,442,000 | 0 Weeks, 5 Days | 3,000 |
|
Buy Now |
|||||
Avnet Americas |
BCW68HE6327HTSA1 |
Reel | 4 Weeks | 42,000 |
|
Buy Now |
|||||
New Advantage Corporation |
BCW68HE6327HTSA1 |
4,353,000 | 1 |
|
Buy Now |
||||||
Diodes Incorporated
|
|||||||||||
Distributors | Part | Package | Stock | Lead Time | Min Order Qty | Price | Buy | ||||
Arrow Electronics (3) |
BCW68HTA |
105,000 | 8 Weeks | 3,000 |
|
Buy Now |
|||||
BCW68HTA |
3,000 | 8 Weeks | 3,000 |
|
Buy Now |
||||||
BCW68HTA |
Cut Strips | 3,000 | 8 Weeks | 1 |
|
Buy Now |
|||||
Avnet Silica |
BCW68HTA |
1 Weeks, 3 Days | 3,000 |
|
Buy Now |
||||||
Avnet Americas (2) |
BCW68HTA |
Reel | 8 Weeks | 3,000 |
|
Buy Now |
|||||
BCW68HTA |
Ammo Pack | 50 Weeks, 4 Days | 1 |
|
Buy Now |
||||||
Avnet Asia |
BCW68HTA |
12 Weeks | 6,000 |
|
Buy Now |
||||||
New Advantage Corporation (2) |
BCW68HTA |
18,000 | 1 |
|
Buy Now |
||||||
BCW68HTA |
3,000 | 1 |
|
Buy Now |
|||||||
Nexperia
|
|||||||||||
Distributors | Part | Package | Stock | Lead Time | Min Order Qty | Price | Buy | ||||
Arrow Electronics (2) |
BCW68HR |
4 Weeks | 3,000 |
|
Get Quote |
||||||
BCW68HR |
4 Weeks | 3,000 |
|
Get Quote |
|||||||
Avnet EBV |
BCW68HR |
9,000 | 0 Weeks, 6 Days | 3,000 |
|
Buy Now |
|||||
Avnet Silica |
BCW68HR |
27,000 | 0 Weeks, 6 Days | 3,000 |
|
Buy Now |
|||||
Avnet Americas (2) |
BCW68HR |
Reel | 4 Weeks | 48,000 |
|
Buy Now |
|||||
BCW68HR |
Reel | 4 Weeks | 15,823 |
|
Get Quote |
||||||
Avnet Asia |
BCW68HR |
4 Weeks | 48,000 |
|
Buy Now |
||||||
Nexperia
|
|||||||||||
Distributors | Part | Package | Stock | Lead Time | Min Order Qty | Price | Buy | ||||
Arrow Electronics |
BCW68HVL |
4 Weeks | 10,000 |
|
Get Quote |
||||||
Avnet Americas (2) |
BCW68HVL |
Reel | 4 Weeks | 15,823 |
|
Buy Now |
|||||
BCW68HVL |
Reel | 4 Weeks | 50,000 |
|
Buy Now |
||||||
Zetex / Diodes Inc
|
|||||||||||
Distributors | Part | Package | Stock | Lead Time | Min Order Qty | Price | Buy | ||||
Verical (2) |
BCW68HTA |
105,000 | 3,000 |
|
Buy Now |
||||||
BCW68HTA |
3,000 | 110 |
|
Buy Now |
|||||||
Quest Components (4) |
BCW68HTA |
71 |
|
Buy Now |
|||||||
BCW68HTA |
176 |
|
Buy Now |
||||||||
BCW68HTA |
2,184 |
|
Buy Now |
||||||||
BCW68HTA |
5,356 |
|
Buy Now |
||||||||
Bristol Electronics (2) |
BCW68HTA |
220 | 17 |
|
Buy Now |
||||||
BCW68HTA |
6,696 |
|
Get Quote |
||||||||
ComSIT Europe |
BCW68HTA |
93,000 |
|
Get Quote |
Маркировка транзисторов в соответствии с советской системой классификации.
У транзисторов,разработанных до 1964
года условные обозначения типа состоят из двух или трех элементов.
Первый элемент обозначения — буква П, означающая, что данная деталь и является, собственно,
транзистором.
Биполярные транзисторы в герметичном корпусе обозначались двумя буквами — МП, буква М означала
модернизацию.
Второй элемент обозначения — одно, двух или
трехзначное число, которое определяет порядковый
номер разработки и подкласс транзистора, по роду полупроводникового материала,
значениям допустимой рассеиваемой мощности и
граничной(или предельной) частоты.
От 1 до 99 — германиевые маломощные низкочастотные транзисторы.
От 101 до 199 — кремниевые маломощные низкочастотные транзисторы.
От 201 до 299 — германиевые мощные низкочастотные транзисторы.
От 301 до 399 — кремниевые мощные низкочастотные транзисторы.
От 401 до 499 — германиевые высокочастотные и СВЧ маломощные транзисторы.
От 501 до 599 — кремниевые высокочастотные и СВЧ маломощные транзисторы.
От 601 до 699 — германиевые высокочастотные и
СВЧ мощные транзисторы.
От 701 до 799 — кремниевые высокочастотные и СВЧ
мощные транзисторы.
Третьим элементом может быть буква, определяющая классификацию по параметрам транзисторам, изготовленной по одной технологии.
Например: МП42 — транзистор германиевый, низкочастотный, маломощный, номер разработки — 42
П401 — транзистор германиевый, маломощный,высокочастотный, номер разработки — 1.
Начиная с 1964 года была введена другая система обозначений, действовшая до 1978 года.
Ее появление было связано с появлением большого числа новых серий разнообразных
полупроводниковых приборов, в частности — полевых транзисторов.
Для обозначения исходного материала используются следующие символы(первый элемент обозначения):
Буква Г или цифра 1 — германий.
Буква К или цифра 2 — кремний.
Буква А или цифра 3 — арсенид галлия.
Второй элемент — буква Т, означает биполярный
транзистор, буква П — транзистор полевый.
В качестве третьего элемента обозначения используются девять цифр, характеризующих подклассы транзисторов по значениям рассеиваемой мощности и граничной частоты.
1 -транзисторы маломощные(до 0,3 ватт) низкочастотные(до 3 МГц).
2 — транзисторы маломощные(до 0,3 ватт) средней частоты(до 30 МГц).
3 — транзисторы маломощные(до 0,3 ватт) высокочастотные.
4- транзисторы средней мощности(до 1,5 ватт), низкочастотные(до 3 МГц).
5 -транзисторы средней мощности(до 1,5 ватт),средней частоты(до 30 МГц).
6-транзисторы средней мощности(до 1,5 ватт),высокочастотные
и СВЧ.
7 — транзисторы мощные(свыше 1,5 ватт), низкочастотные(до 3 МГц).
8- транзисторы мощные(свыше 1,5 ватт), средней частоты(до 30 МГц).
9 — транзисторы мощные(свыше 1,5 ватт), высокочастотные и СВЧ.
Четвертый и пятый элементы обозначения —
определяют порядковый номер разработки.
Пример: КТ315А кремниевый биполярный транзистор,
маломощный, высокочастотный,подкласс А.
С 1978 года были введены изменения,
первые два символа обозначающие материал
и подкласс транзистора остались преждними.
Изменения коснулись обозначения функциональных
возможностей — третьего элемента.
Для биполярных транзисторов:
1 — транзистор с рассеиваемой мощностью до
1 ватта и граничной частотой до 30 МГц.
2- транзистор с рассеиваемой мощностью до
1 ватта и граничной частотой до 300 МГц.
4 — транзистор с рассеиваемой мощностью до
1 ватта и граничной частотой более 300 МГц.
7 — транзистор с рассеиваемой мощностью более
1 ватта и граничной частотой до 30 МГц.
8 — транзистор с рассеиваемой мощностью более
1 ватта и граничной частотой до 300 МГц.
9 — транзистор с рассеиваемой мощностью более
1 ватта и граничной частотой свыше 300 МГц.
Те же обозначения действительны и для полевых транзисторов.
Для обозначения порядкового номера разработки
используют трехзначные числа от 101 до 999(следующие три знака).
Для дополнительной классификации используют
буквы русского алфавита, от А до Я.
Цифра, написанная через дефис после седьмого элемента — обозначения модификаций бескорпусных транзисторов:
1 — с гибкими выводами без кристаллодержателя.
2 -с гибкими выводами на кристаллодержателе.
3 — с жесткими выводами без кристаллодержателя.
4 — с жесткими выводами на кристаллодержателе.
5 — с контактными площадками без кристаллодержателя и без выводов.
6 — с контактными площадками на кристаллодержателе, но без выводов.
Пример:КТ2115А-2 кремниевый биполярный транзистор для устройств широкого применения,
маломощный, высокочастотный, бескорпусный с гибкими выводами на кристаллодержателе.
В общем, — без хорошего каталога не разберешься.
Биполярный транзистор 2N5087 — описание производителя. Основные параметры. Даташиты.
Наименование производителя: 2N5087
Тип материала: Si
Полярность: PNP
Максимальная рассеиваемая мощность (Pc): 0.31
W
Макcимально допустимое напряжение коллектор-база (Ucb): 50
V
Макcимально допустимое напряжение коллектор-эмиттер (Uce): 50
V
Макcимально допустимое напряжение эмиттер-база (Ueb): 3
V
Макcимальный постоянный ток коллектора (Ic): 0.05
A
Предельная температура PN-перехода (Tj): 135
°C
Граничная частота коэффициента передачи тока (ft): 40
MHz
Ёмкость коллекторного перехода (Cc): 4
pf
Статический коэффициент передачи тока (hfe): 250
Корпус транзистора:
2N5087
Datasheet (PDF)
..1. Size:434K motorola 2n5086 2n5087.pdf
MOTOROLAOrder this documentSEMICONDUCTOR TECHNICAL DATAby 2N5086/DAmplifier Transistors2N5086PNP Silicon*2N5087*Motorola Preferred DeviceCOLLECTOR32BASE1EMITTER 123
..2. Size:49K philips 2n5087 cnv 2.pdf
DISCRETE SEMICONDUCTORSDATA SHEETbook, halfpageM3D1862N5087PNP general purpose transistorProduct specification 1997 Jul 02Supersedes data of September 1994File under Discrete Semiconductors, SC04Philips Semiconductors Product specificationPNP general purpose transistor 2N5087FEATURES PINNING Low current (max. 100 mA)PIN DESCRIPTION Low voltage (max. 50 V).1
..3. Size:100K fairchild semi 2n5086 2n5087 mmbt5087.pdf
2N5086/2N5087/MMBT5087PNP General Purpose Amplifier3 This device is designed for low level, high gain, low noise general purpose amplifier applications at collector currents to 50mA.2SOT-23TO-92 1Mark: 2Q11. Emitter 2. Base 3. Collector 1. Base 2. Emitter 3. Collector Absolute Maximum Ratings* Ta=25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collect
..4. Size:60K central 2n5086 2n5087.pdf
145 Adams Avenue, Hauppauge, NY 11788 USATel: (631) 435-1110 Fax: (631) 435-1824
..5. Size:1285K sprague 2n4265 2n4400 2n4401 2n4402 2n4403 2n4409 2n4410 2n4424 2n4425 2n4951 2n4952 2n4953 2n4954 2n5087 2n5088 2n5089.pdf
0.1. Size:300K motorola 2n5087rev0.pdf
MOTOROLAOrder this documentSEMICONDUCTOR TECHNICAL DATAby 2N5087/DAmplifier TransistorPNP Silicon2N5087COLLECTOR3Motorola Preferred Device2BASE1EMITTER123MAXIMUM RAT
0.2. Size:155K onsemi 2n5087-d.pdf
2N5087Preferred Device Amplifier TransistorPNP SiliconFeatures Pb-Free Packages are Available*http://onsemi.com3 COLLECTORMAXIMUM RATINGS2BASERating Symbol Value UnitCollector-Emitter Voltage VCEO 50 Vdc1 EMITTERCollector-Base Voltage VCBO 50 VdcEmitter-Base Voltage VEBO 3.0 VdcCollector Current — Continuous IC 50 mAdcTO-92Total Device Dissipation @ TA = 2
0.3. Size:156K onsemi 2n5087g.pdf
2N5087Preferred Device Amplifier TransistorPNP SiliconFeatures Pb-Free Packages are Available*http://onsemi.com3 COLLECTORMAXIMUM RATINGS2BASERating Symbol Value UnitCollector-Emitter Voltage VCEO 50 Vdc1 EMITTERCollector-Base Voltage VCBO 50 VdcEmitter-Base Voltage VEBO 3.0 VdcCollector Current — Continuous IC 50 mAdcTO-92Total Device Dissipation @ TA = 2
0.4. Size:156K onsemi 2n5087rlrag.pdf
2N5087Preferred Device Amplifier TransistorPNP SiliconFeatures Pb-Free Packages are Available*http://onsemi.com3 COLLECTORMAXIMUM RATINGS2BASERating Symbol Value UnitCollector-Emitter Voltage VCEO 50 Vdc1 EMITTERCollector-Base Voltage VCBO 50 VdcEmitter-Base Voltage VEBO 3.0 VdcCollector Current — Continuous IC 50 mAdcTO-92Total Device Dissipation @ TA = 2
0.5. Size:49K hsmc h2n5087.pdf
Spec. No. : HE6210HI-SINCERITYIssued Date : 1998.02.01Revised Date : 2005.01.20MICROELECTRONICS CORP.Page No. : 1/5H2N5087PNP EPITAXIAL PLANAR TRANSISTORDescriptionThis device was designed for low noise,high gain,general purpose amplifierapplications for 1uA to 25mA collector current.TO-92Absolute Maximum Ratings Maximum TemperaturesStorage Temperature ………..
Другие транзисторы… 2N508
, 2N5080
, 2N5081
, 2N5082
, 2N5083
, 2N5084
, 2N5085
, 2N5086
, 2N3773
, 2N5088
, 2N5089
, 2N508A
, 2N509
, 2N5090
, 2N5091
, 2N5092
, 2N5093
.
Полевые SMD транзисторы
Маркировка | Тип прибора | Маркировка | Тип прибора |
6A | MMBF4416 | C92 | SST4392 |
6B | MMBF5484 | C93 | SST4393 |
6C | MMBFU310 | H16 | SST4416 |
6D | MMBF5457 | I08 | SST108 |
6E | MMBF5460 | I09 | SST109 |
6F | MMBF4860 | I10 | SST110 |
6G | MMBF4393 | M4 | BSR56 |
6H | MMBF5486 | M5 | BSR57 |
6J | MMBF4391 | M6 | BSR58 |
6K | MMBF4932 | P01 | SST201 |
6L | MMBF5459 | P02 | SST202 |
6T | MMBFJ310 | P03 | SST203 |
6W | MMBFJ175 | P04 | SST204 |
6Y | MMBFJ177 | S14 | SST5114 |
B08 | SST6908 | S15 | SST5115 |
B09 | SST6909 | S16 | SST5116 |
B10 | SST6910 | S70 | SST270 |
C11 | SST111 | S71 | SST271 |
C12 | SST112 | S74 | SST174 |
C13 | SST113 | S75 | SST175 |
C41 | SST4091 | S76 | SST176 |
C42 | SST4092 | S77 | SST177 |
C43 | SST4093 | TV | MMBF112 |
C59 | SST4859 | Z08 | SST308 |
C60 | SST4860 | Z09 | SST309 |
C61 | SST4861 | Z10 | SST310 |
C91 | SST4391 |
А это пример n-p-n и p-n-n биполярных транзисторов (sot-23, sot-323) с типовым расположением выводов:
Аналоги
Для замены M7 могут подойти диоды кремниевые, диффузионные, выпрямительные, предназначенные для использования в источниках питания и преобразовательных устройствах аппаратуры общего назначения.
Отечественное производсто
Тип | URRM | IF(AV) | IFSM | TJ | UFM | IRMTA = 25°C | IRMTA = 125°C | Корпус |
---|---|---|---|---|---|---|---|---|
SM4007 | 1000 | 1 | 30 | -55°C.…+125°C | 1 | 2,5 | 50 | SMA-W(DO-214AB) |
КД210В | 1000 | 10 | 50 | ≤ 140°С | 1 | ≤ 4,5 мА | КД-11 | |
2Д220Г/И | 1000 | 3 | 60 | – | 1,2/1,0 | 45 мкА | 1,5 мА | КД-10 |
2Д230Г/И | 1000 | 3 | 60 | -60°C.…+125°C | 1,5/1,3 | 45 мкА | 1,5 мА | КД-11 |
КД243Ж | 1000 | 1 | 6 | -60°C….+125°C | 1,1 | 10 мкА | 0,1 мА | КД-4Б |
КД248А/Б/К | 1000 | 3,0/1,0/1,5 | 9,6/3,2/4,8 | -60°C…+125°C | 1,4 | 40 мкА | КД-16 | |
2Д254 | 1000 | 1 | 3,2 | – | 1,5 | – | – | – |
КД257Д | 1000 | 3 | 15 | -60°C….+85°C | 1,5 | 0,2 мА | – | КД-29С |
КД258Д | 1000 | 3 | 7,5 | -60°C….+85°C | 1,6 | 2 мкА | – | КД-29А |
Зарубежное производство
Тип | URRM/URSM/UDC, В | IF(AV), А | IFSM, А | TJ, °С | UFM, В | IRM, мкАTA = 25°C | IRM, мкА TA = 125°C | RƟJL, °C/Вт | RƟJA, °C/Вт | CJ, пФ | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|
SM4007 | 1000/700/1000 | 1 | 30 | -55°C.…+125°C | 1 | 2,5 | 50 | – | 55 | 12 | SMA-W(DO-214AB) |
1N4145 | 1000/700/1000 | 3 | 300 | -55°C….+150°C | 1 | 10 | 100 | – | 20 | 35 | DO-27 |
1N4249 | 1000/700/1000 | 1 | 40 | -65°C…+200°C | 1,2 | 1 | 25 | – | – | – | GPR-1A |
1N4948 | 1000/700/1000 | 1 | 30 | -65°C….+150°C | 1,3 | 5 | 50 | – | 50 | 15 | DO-41 |
1N5054 | 1000/700/1000 | 1,5 | 48 | -65°C….+170°C | 1,3 | 500 | – | – | – | DO-41 | |
1N5408 | 1000/700/1000 | 3 | 200 | -65°C….+200°C | 1 | 5 | 100 | – | 40 | 50 | DO-201AD |
1N5622 | 1000/700/1000 | 1 | 50 | -65°C….+200°C | 1,2 | 0,5 | 25 | – | – | 35 | GPR-1A |
BY133 | 1300/940/1300 | 1 | 30 | -55°C…+150°C | 1,1 | 5 | 200 | – | 50 | 15 | DO-41 |
BY255 | 1300/- /1300 | 3 | 100 | -50°C….+150°C | 1,1 | 20 | – | – | 25 | – | DO-201 |
BY227MGP | 1250/875/1250 | 2 | 60 | -65°C….+175°C | 1,5 | 5 | 100 | – | – | 25 | DO-15 |
BYD57M | 1000/-/1000 | 1 | 5 | -65°C…+175°C | 2,1 | 5 | 100 | 30 | 150 | 20 | SOD87 |
BYT-11 | URRM = 1000 | 1 | 35 | -55°C….+150°C | 1,3 | 20 | – | – | 60 | – | F126 |
BYT51M | URRM = 1000 | 1 | 50 | -55°C…+175°C | 1,1 | 1 | 100 | – | 45 | – | DO-15 |
BYT54M | 1000/700/1000 | 1,25 | 30 | -55°C….+175°C | 1,5 | 5 | 150 | – | 45 | – | DO-41 |
BYV36E | 1000/700/1000 | 1,6 | 30 | -55°C…+150°C | 1,45 | 5 | 100 | – | 45 | 18 | DO-15 |
BYV96E | 1000/700/1000 | 1,5 | 35 | +175°C | 1,6 | 5 | 150 | – | 50 | – | DO-15 |
BYW56GP | 1000/700/1000 | 2 | 50 | -65°C….+175°C | 1 | 5 | 100 | – | 35 | 50 | DO-15 DO-204AC |
GP210 | 1000/700/1000 | 2 | 70 | -65°C…+175°C | 1,1 | 5 | 50 | – | – | 40 | – |
GPP15M | 1000/700/1000 | 1,5 | 60 | -65°C….+175°C | 1,1 | 5 | – | – | – | 25 | DO-15 |
GPP10M | 1000/700/1000 | 1 | 30 | -65°C…+125°C | 1 | 5 | 50 | – | 50 | 15 | DO-41 |
GPP20M | 1000/700/1000 | 2 | 70 | -65°C….+125°C | 1 | 5 | 50 | – | 40 | 20 | DO-15 |
GP15M | 1000/700/1000 | 1,5 | 50 | -55°C…+150°C | 1,1 | 5 | 100 | – | – | 20 | DO-15 |
GP110 | 1000/700/1000 | 1 | 50 | -65°C….+175°C | 1 | 0,5 | 30 | – | 30 | 10 | DO-41 |
MUR1100F | 1000/700/1000 | 1 | 35 | -55°C….+150°C | 1,75 | 5 | 50 | – | – | 20 | SOD-123F |
RGP15M | 1000/700/1000 | 1,5 | 50 | -65°C….+175°C | 1,3 | 5 | 200 | – | 30 | 25 | DO-15 |
RGP110 | 1000/700/1000 | 1 | 50 | -65°C….+175°C | 1,2 | 0,5 | 25 | – | 55 | 15 | DO-41 |
Те же данные представленны в виде картинки.
Примечание: данные таблиц получены из даташит компаний-производителей.
Литература по электронике
Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:
- Цифровая схемотехника и архитектура компьютера — Дэвид М.
- Операционные системы. Разработка и реализация — Эндрю Т.
- Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .
В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.
Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются
В этом деле очень важно идти в ногу со временем. Успехов вам!. Источники
Источники
- https://habr.com/ru/post/133136/
- https://principraboty.ru/princip-raboty-tranzistora/
- https://odinelectric.ru/knowledgebase/kak-rabotaet-tranzistor-i-gde-ispolzuetsya
- https://rusenergetics.ru/oborudovanie/skhema-tranzistora
- https://RadioStorage.net/1670-tranzistory-osnovnye-parametry-i-harakteristiki-markirovka-tranzistorov.html
- https://tokar.guru/hochu-vse-znat/tranzistor-vidy-primenenie-i-principy-raboty.html
- https://www.RusElectronic.com/chitaem-elektricheskie-skhemy-s-tranzistorami/
Цветовая маркировка керамических конденсаторов
Цветовая маркировка часто используется для конденсаторов с малой площадью поверхности. Цветные полосы наносятся сверху вниз или слева направо. Номинальная емкость обычно указывается 3-5 цветными полосками, две первые из них обозначают определенную цифру. Черный – 0, коричневый – 1, красный – 2, оранжевый – 3, желтый – 4, зеленый – 5, голубой – 6, фиолетовый – 7, серый – 8, белый – 9.
Число, которое составляется из цифр, закодированных в двух первых полосках, умножается на множитель, зашифрованный в третьей полоске. Оранжевая полоса означает 103, желтый – 104, зеленый – 105.
В маркировке может присутствовать четвертая полоса, цвет которой соответствует допустимым отклонениям от номинальной емкости. Белый цвет означает, что допустимы отклонения 10 % в обе стороны, а черный – 20 % в обе стороны. Пятая полоска характеризует номинал напряжения. Красный – 250 В, желтый – 400 В.
Для чего предназначены выводы
Обозначение производится следующим образом:
- Ground (GND) — аббревиатура основного провода.
- Input Voltage (VCC) — питание.
- Feedback (FB) — обратная связь для контроля напряжения.
- Output (JUT) — соединение с затвором главного транзистора.
- Current sense input pin (SEN) — токовый датчик, подключаемый к стоку главного транзисторного прибора.
- Internal Oscillator frequency setting pin (RI) — подключение резистора извне, задающего частоту. В ряде микросхем он заменяется на CT.
- Brownout Protection Pin (BNO) — регулятор наименьшего напряжения питания. Когда оно на этом входе меньше порогового, осуществляется отключение подачи импульсов от микросхемы.
Когда питание подается ко входу контроллера VCC, за ним следует напряжение с помощью резистора указанного моста. С помощью микросхемы запускается выдача импульсов. В дальнейшем питание подается с помощью выпрямления напряжения на нижней левой обмотке трансформатора импульсного типа.
Генерация на микросхеме происходит с фиксированной частотой. Ее задают значением резистора на RI, либо емкости на СТ.
Напряжение стабилизируется с помощью сопоставления силы тока, который протекает через главный транзистор MOSFET и обратного напряжения. Оценка тока осуществляется с учетом величины снижения напряжения резистора в цепи транзисторного стока, при подключении к выходу SEN.
Обратное напряжение снимают с регулирующегося стабилитрона. Минуя оптопару, он попадает на FB
От величины напряжения на заданных выходах зависит импульсная скважность на OUT. В большей части микросхем есть разные защитные системы, которые предотвращают поломку в нестандартных случаях