Транзистор d1415: технические характеристики

Технические характеристики транзистора d1415: подробное описание и особенности

Транзистор D1415: общие характеристики

Транзистор D1415 обеспечивает высокую переходную и выходную характеристику, что делает его идеальным выбором для использования в различных электронных устройствах и схемах. Он обладает низким сопротивлением включения-выключения и способен работать в широком диапазоне рабочих напряжений и токов.

Транзистор D1415 может быть использован в таких областях, как усиление сигналов, высокочастотная электроника, коммутация и контроль тока. Он часто применяется в радиолюбительских проектах, а также в промышленности и автомобильной электронике.

Основные характеристики транзистора D1415:

  • Максимальная рабочая частота: 500 МГц
  • Максимальное рабочее напряжение коллектора: 50 В
  • Максимальный коллекторный ток: 100 мА
  • Коэффициент усиления по току: 50-800
  • Тепловое сопротивление: 150 °C/Вт
  • Тип корпуса: TO-92

Транзистор D1415 является надежным и долговечным устройством, которое легко собирается и применяется в различных электронных схемах. Благодаря своим характеристикам, он позволяет эффективно усиливать и контролировать электрические сигналы.

Биполярный транзистор 2SC1384 — описание производителя. Основные параметры. Даташиты.

Наименование производителя: 2SC1384

Тип материала: Si

Полярность: NPN

Максимальная рассеиваемая мощность (Pc): 0.75
W

Макcимально допустимое напряжение коллектор-база (Ucb): 60
V

Макcимально допустимое напряжение коллектор-эмиттер (Uce): 50
V

Макcимально допустимое напряжение эмиттер-база (Ueb): 5
V

Макcимальный постоянный ток коллектора (Ic): 1.5
A

Предельная температура PN-перехода (Tj): 175
°C

Граничная частота коэффициента передачи тока (ft): 100
MHz

Статический коэффициент передачи тока (hfe): 60

Корпус транзистора:

2SC1384
Datasheet (PDF)

 ..1. Size:47K  panasonic 2sc1383 2sc1384.pdf

Transistor2SC1383, 2SC1384Silicon NPN epitaxial planer typeFor low-frequency power amplification and driver amplificationUnit: mmComplementary to 2SA683 and 2SA6845.9 0.2 4.9 0.2FeaturesLow collector to emitter saturation voltage VCE(sat).Complementary pair with 2SA683 and 2SA684.0.7 0.1Absolute Maximum Ratings (Ta=25C)2.54 0.15Parameter Symbol Ratings Unit

 ..2. Size:276K  utc 2sc1384.pdf

UNISONIC TECHNOLOGIES CO., LTD 2SC1384 NPN SILICON TRANSISTOR NPN SILICON TRANSISTOR DESCRIPTION The UTC 2SC1384 is power amplifier and driver. FEATURES * Low VCE(SAT) * 2~3W output in complementary pair with 2SA684 ORDERING INFORMATION Ordering Number Pin Assignment Package Packing Lead Free Halogen-Free 1 2 3- 2SC1384G-x-AB3-R SOT-89 B C E Tape Reel2SC138

 ..3. Size:377K  jiangsu 2sc1383 2sc1384.pdf

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD TO-92L Plastic-Encapsulate Transistors2SC1383 TRANSISTOR (NPN)2SC1384 TO-92L FEATURES Low Collector to Emitter Saturation Voltage VCE(sat).1.EMITTER Complementary Pair with 2SA0683 and 2SA0684.2.COLLECTOR 3.BASE C1383=Device code C1383Solid dot = Green molding compound device, Equivalent Circuit if none,

 ..4. Size:193K  lzg 2sc1384 3da1384.pdf

2SC1384(3DA1384) NPN /SILICON NPN TRANSISTOR : Purpose: AF power amplifier and driver applications. :, 2SA684(3CA684) 23 Features: Low V ,23W output in complementary pair with 2SA684(3CA684). CE(sat)/Absolute maximum ratings(Ta=25)

 ..5. Size:166K  tgs 2sc1383 2sc1384.pdf

TIGER ELECTRONIC CO.,LTD TO-92L Plastic-Encapsulate Transistors 2SC1383 TRANSISTOR (NPN) TO-92L 2SC1384 FEATURES 1.EMITTER Low collector to emitter saturation voltage VCE(sat). 2.COLLECTOR Complementary pair with 2SA0683 and 2SA0684. 3.BASE MAXIMUM RATINGS (TA=25 unless otherwise noted) Symbol Parameter 2SC1383 2SC1384 UnitsVCBO Collector-Base Voltage 30 60 V

 0.1. Size:245K  lge 2sc1383-2sc1384.pdf

2SC1383/2SC1384 TO-92L Transistor (NPN)TO-92L1.EMITTER 2.COLLECTOR 3.BASE 4.700 2 3 5.1001Features Low collector to emitter saturation voltage VCE(sat). 7.8008.200 Complementary pair with 2SA0683 and 2SA0684. 0.6000.800MAXIMUM RATINGS (TA=25 unless otherwise noted) Symbol Parameter 2SC1383 2SC1384 Units0.350VCBO Collector-Base Voltage 30 60 V 0.550

 0.2. Size:245K  lge 2sc1383-2sc1384 to-92mod.pdf

2SC1383/2SC1384 TO-92MOD Transistor (NPN)1.EMITTER TO-92MOD2.COLLECTOR 1 23.BASE 3 Features5.800 Low collector to emitter saturation voltage VCE(sat). 6.200 Complementary pair with 2SA0683 and 2SA0684. 8.4008.800MAXIMUM RATINGS (TA=25 unless otherwise noted) 0.9001.100Symbol Parameter 2SC1383 2SC1384 Units0.4000.600VCBO Collector-Base Voltage 30

 0.3. Size:514K  semtech st2sc1383 st2sc1384.pdf

ST 2SC1383 / 2SC1384 NPN Silicon Epitaxial Planar Transistor For low-frequency power amplification and driver Amplification. Complementary to 2SA683 to and 2SA684. On special request, these transistors can be manufactured in different pin configurations. 1. Emitter 2. Collector 3. Base TO-92 Plastic PackageAbsolute Maximum Ratings (Ta = 25) Parameter Symbol Value UnitCo

Другие транзисторы… 2SC1378
, 2SC1379
, 2SC138
, 2SC1380
, 2SC1380A
, 2SC1381
, 2SC1382
, 2SC1383
, 2SC2073
, 2SC1385
, 2SC1385H
, 2SC1386
, 2SC1386H
, 2SC1387
, 2SC1388
, 2SC1388F
, 2SC138A
.

О транзисторе

Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.

Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. В таблице ниже представлена цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.

Таблица маркировки маломощных среднечастотных и высокочастотных транзисторов.

Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления.

Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N.

На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход.

Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.

Для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h21э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.

Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода. В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.

Современный многофункциональный мультиметр.

Проверка работоспособности транзистора

Подключаем на базу полевого транзистора плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение. Затем минусовым щупом подключаем к выводу эмиттера и измеряем. Если переходы транзистора не пробиты, то падение напряжения на коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.

Будет интересно Варианты схем подключения проходных выключателей

Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.

Теперь произведём обратное измерение коллекторного и эмиттерного перехода.

Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует.

Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства.

При этом во многих случаях можно обойтись и без выпаивания его из платы.

Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением.

Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.

2sc2482-y Микрокоммерческие компоненты, 2sc2482-y Лист данных

Ревизия: 1

ВЫКЛ. ХАРАКТЕРИСТИКИ

I

I

ПО ХАРАКТЕРИСТИКАМ

МАЛОСИГНАЛЬНЫЕ ХАРАКТЕРИСТИКИ

КЛАССИФИКАЦИЯ H

Характеристики

Электрические характеристики @ 25

Максимальные рейтинги

В

В

В

I

Генеральный директор

EBO

ч

В

В

f

Початок

Символ

CBO

т

Коммерческие микрокомпоненты

Символ

FE (1)

(BR) Генеральный директор

(BR) CBO

(BR) EBO

CE (сб)

BE

В

В

В

т

-P

M C C

т

СТГ

Генеральный директор

CBO

EBO

I

С

Высокое напряжение: Vceo = 300 В

Выходная емкость малого коллектора: Cob = 3.0 пФ (тип.)

С

Дж

Диапазон

Рейтинг

Напряжение коллектор-эмиттер

Напряжение пробоя коллектор-база

Напряжение эмиттер-база

Ток коллектора

Рассеиваемая мощность коллектора

Рабочая температура перехода

Температура хранения

Напряжение пробоя коллектор-эмиттер

Напряжение пробоя коллектор-база

Напряжение пробоя эмиттер-база

Ток отсечки коллектора

Ток отсечки коллектора

Ток отсечки эмиттера

Коэффициент усиления постоянного тока

Напряжение насыщения коллектор-эмиттер

Частота транзистора

f = 30 МГц)

Напряжение насыщения база-эмиттер

Выходная емкость коллектора

В

(I

(I

(I

(I

(I

(I

(I

CB

С

С

E

С

С

С

С

= 100 мкА постоянного тока, I

CB

CB

EB

= 3 мА постоянного тока, I

= 100 мкА постоянного тока, I

= 20 мА постоянного тока, В

= 10 мА постоянного тока, I

= 10 мА постоянного тока, I

= 20 мА постоянного тока, В

=

= 7 В постоянного тока, I

= 240 В постоянного тока, I

= 220 В постоянного тока, I

20В, я

FE (1)

E

= 0, f = 1 МГц

С

В

Параметр

= 0)

Рейтинг

= 0)

В

В

С

E

CE

CE

= 1 мА пост. Тока)

= 1 мА пост. Тока)

E

В

= 0)

= 0)

= 0)

= 0)

30-90

= 10 В постоянного тока)

= 10 В постоянного тока,

O

www.mccsemi.com

TM

O

C Если не указано иное

компоненты

20736 Марилла Стрит Чатсуорт

! »№

$
%! «#

-55 до +150

-55 до +150

300

300

7

30

мин.

50

Рейтинг

0,1

0.9

7,0

300

300

3

90–150

Макс

1,0

1,0

5,0

150

1,0

1,0

Я

1 из 4

Блок

пФ

В

МГц

Вт

O

O

А

В

Квартир

В

мкА постоянного тока

С

С

мкА постоянного тока

мкА постоянного тока

В постоянного тока

В постоянного тока

В постоянного тока

В постоянного тока

В постоянного тока

DIM

С

D

G

H

кв. м

N

А

В

E

F

Дж

К

л

I

Эпитаксиальный кремний

ДЮЙМОВ

МИН

2SC2482

2SC2482-O

2SC2482-Y

Транзистор

С

F

А

В

D

.050

0,050

. 100

0,039

К-92МОД

123

МАКС

0,030

0,039

.031

0,024

.201

.087

0,024

. 323

. 413

. 161

H

E

НПН

РАЗМЕРЫ

G

МИН

ММ

1.27

1,27

2,54

1,00

МАКС

10,50

1.

Металл-воздушные транзисторы

По своей сути принципы работы и конструкция металл-воздушного транзистора напоминает транзисторы MOSFET. За некоторыми исключениями: стоком и истоком нового транзистора являются металлические электроды. Затвор устройства расположен под ними и заизолирован оксидной пленкой. Сток и исток установлены друг от друга на расстоянии тридцати нанометров, что позволяет электронам свободно проходить сквозь воздушное пространство. Обмен заряженными частицами происходит за счет автоэлектронной эмиссии.

Разработкой металл-воздушных транзисторов занимается команда из университета в Мельбурне — RMIT. Инженеры говорят, что технология «вдохнет новую жизнь» в закон Мура и позволит строить целые 3D-сети из транзисторов. Производители чипов смогут перестать заниматься бесконечным уменьшением техпроцессов и займутся формированием компактных 3D-архитектур.

Сейчас команда ищет инвесторов, чтобы продолжить свои исследования и разрешить технологические сложности. Электроды стока и истока плавятся под воздействием электрического поля — это снижает производительность транзистора. Недостаток планируют поправить в ближайшие пару лет. После этого инженеры начнут подготовку к выводу продукта на рынок. О чем еще мы пишем в нашем корпоративном блоге:

  • VMware EMPOWER 2021: делимся впечатлениями
  • Перспективы дата-центров: технологии, которые повысят производительность серверов
  • Процессоры для серверов: обсуждаем новинки
  • Развитие дата-центров: технологические тренды
  • Как повысить энергоэффективность дата-центра
  • Как разместить 100% инфраструктуры в облаке IaaS-провайдера и не пожалеть об этом
  • «Как дела у VMware»: обзор новых решений

Описание

Основные особенности транзистора D1415:

  • Тип полевого транзистора: N-канальный
  • Максимальное напряжение стока: 600 В
  • Максимальный ток стока: 20 А
  • Номинальная мощность: 150 Вт
  • Максимальная рабочая частота: 100 МГц
  • Корпус: TO-220

Транзистор D1415 обеспечивает надежную работу при высоких температурах благодаря своей конструкции. Он имеет высокую теплопроводность и может работать при температуре до 150°C.

Благодаря своим техническим характеристикам, транзистор D1415 широко используется в различных сферах, включая энергетическую промышленность, радиосвязь и источники питания.

Что такое NPN транзистор?

Транзисторы вытеснили электролампы, позволили уменьшить количество реле, переключателей в устройствах. Это полупроводниковые триоды — радиоэлектронные компоненты из полупроводников, стандартно имеют 3 вывода.

Транзисторы, предназначенные для управления током, то есть основным силовым фактором электросхем, именно его удар (не напряжения) несет опасность для человека.

Элемент способен контролировать чрезвычайно высокие величины в выходных цепях при подаче слабого входного сигнала. Транзисторы повышают, генерируют, коммутируют, преобразовывают электросигналы, это основа микроэлектроники, электроустройств.

Разновидности по принципу действия:

  • биполярный транзистор из 2 типов проводников, в основе функционирования – взаимодействие на кристалле соседних p-n участков. Состоят из эмиттера/коллектора/базы (далее, эти термины будем сокращать): на последнюю идет слабый ток, вызывающий модификацию сопротивления (дальше по тексту «сопр.») в линии, состоящей из первых 2 элементов. Таким образом, протекающая величина меняется, сторона ее однонаправленности (n-p-n или p-n-p) определяется характеристиками переходов (участков) в соответствии с полярностью подключения (обратно, прямо). Управление осуществляется модулированием тока на сегменте база/эмит., вывод последнего всегда общий для сигналов управления и выхода;
  • полевой. Тип проводника один — узкий канал, подпадающий под электрополе обособленного затворного прохода. Контроль основывается на модуляции количества Вольт между ним и истоком. А между последним и стоком течет электроток (2 рабочие контакты). Величина имеет силу, зависящую от сигналов, формируемых между затвором (контакт контроля) и одной из указанных частей. Есть изделия с p-n участком управления (рабочие контакты подключаются к p- или n-полупроводнику) или с обособленными затворами.

У полевиков есть варианты полярности, для управления требуется низкий вольтаж, из-за экономичности их ставят в радиосхемы с маломощными БП. Биполярные варианты активируются токами. В аналоговых сборках превалируют вторые (БТ, BJT), в цифровых (процессоры, компьютеры) — первые. Есть также гибриды — IGBT, применяются в силовых схемах.

Datasheet Download — Toshiba Semiconductor

Номер произв C2482
Описание 2SC2482
Производители Toshiba Semiconductor
логотип  

1Page

No Preview Available !

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT Process)
2SC2482
High-Voltage Switching and Amplifier Applications
Color TV Horizontal Driver Applications
Color TV Chroma Output Applications
2SC2482
Unit: mm

• High breakdown voltage: VCEO = 300 V

• Small collector output capacitance: Cob = 3.0 pF (typ.)

• Recommended for chroma output and driver applications for

line-operated TV horizontal.

Maximum Ratings (Ta = 25°C)

Characteristics
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Base current
Collector power dissipation
Junction temperature
Storage temperature range
Symbol

VCBO

VCEO

VEBO

IC

IB

PC

Tj

Tstg

Rating
300
300
7
100
50
900
150

−55 to 150

Unit
V
V
V
mA
mA
mW
°C
°C

Electrical Characteristics (Ta = 25°C)

Characteristics
Collector cut-off current
Emitter cut-off current
DC current gain
Collector-emitter saturation voltage
Base-emitter saturation voltage
Transition frequency
Collector output capacitance
Symbol

ICBO

IEBO

hFE (1)

hFE (2)

VCE (sat)

VBE (sat)

fT

Cob

Test Condition

VCB = 240 V, IE = 0

VEB = 7 V, IC = 0

VCE = 10 V, IC = 4 mA

VCE = 10 V, IC = 20 mA

IC = 10 mA, IB = 1 mA

IC = 10 mA, IB = 1 mA

VCE = 10 V, IC = 20 mA

VCB = 20 V, IE = 0, f = 1 MHz

JEDEC
TO-92MOD
JEITA

TOSHIBA
2-5J1A
Weight: 0.36 g (typ.)
Min Typ. Max Unit

― ― 1.0 µA

― ― 1.0 µA

20 ― ―

30 ― 150

― ― 1.0 V

― ― 1.0 V

50 ― ― MHz

― 3.0 ― pF

Marking
C2482
Part No. (or abbreviation code)
Lot No.
A line indicates
lead (Pb)-free package or
lead (Pb)-free finish.
1
2004-07-26

No Preview Available !

120

100
80
60
40
20

IC – VCE

6
4
Common emitter
Ta = 25°C
32
1
0.6
0.4
IB = 0.2 mA
4 8 12 16 20

Collector-emitter voltage VCE (V)

24
2SC2482
1000
500
300
100
50
30
10
5
0.3

hFE – IC

Common emitter
Ta = 25°C
VCE = 20 V
10
5
1 3 10 30

Collector current IC (mA)

100
1000
500
300
100
50
30
10
5
0.3

hFE – IC

Common emitter
VCE = 10 V
Ta = 100°C

25 −25

1 3 10 30

Collector current IC (mA)

100
10
5
3
1
0.5
0.3
0.1
0.05
0.3

VCE (sat) – IC

Common emitter
Ta = 25°C
IC/IB = 10
5
2
1 3 10 30

Collector current IC (mA)

100
10
5
3
1
0.5
0.3
0.1
0.05
0.3

VCE (sat) – IC

Common emitter
IC/IB = 5
Ta = 100°C

−25 25

1 3 10 30

Collector current IC (mA)

100
10
5
3
1
0.5
0.3
0.0
0.05
0.3

VBE (sat) – IC

Common emitter
IC/IB = 5
Ta = 25°C
1 3 10 30

Collector current IC (mA)

100
2 2004-07-26

No Preview Available !

100

Common emitter
VCE = 10 V
80

IC – VBE

60
Ta = 100°C 25

−25

40
20

0.2 0.4 0.6 0.8 1.0 1.2

Base-emitter voltage VBE (V)

Cob – VCB

100
IE = 0

50 f = 1 MHz

Ta = 25°C
30
10
5
3
1
0.5
0.3
1 3 10 30

Collector-base voltage VCB (V)

100
2SC2482
1000
500
300
100
50
30
10
5
0.3

fT – IC

Common emitter
Ta = 25°C
VCE = 20 V
5 10
1 3 10 30

Collector current IC (mA)

100
Safe Operating Area
300

IC max (pulsed)*

300 µs*

IC max (continuous)
100
1 ms

10 ms*

100 ms*

50 500 ms*

30
DC operation
Ta = 25°C
10

*: Single nonrepetitive pulse

5 Ta = 25°C

Curves must be derated linearly with
increase in temperature.
2
3 10 30
VCE max
100 300

Collector-emitter voltage VCE (V)

3 2004-07-26

Всего страниц 4 Pages
Скачать PDF

Выводы о транзисторе D1415

  1. D1415 является NPN транзистором, то есть он имеет трое выводов: эмиттер (Е), базу (B) и коллектор (K). Такая конфигурация позволяет использовать транзистор в различных схемах, включая усилители сигнала и ключевые элементы.
  2. Транзистор D1415 имеет максимальную рабочую температуру 150°C, что означает, что он может использоваться в условиях повышенной тепловой нагрузки.
  3. Максимальное значение тока коллектора составляет 1.5А, что делает транзистор подходящим для применения в мощных устройствах.
  4. Номинальное напряжение коллектора составляет 25В, что гарантирует надежную работу транзистора в цепях с пониженным напряжением.
  5. Транзистор D1415 имеет коэффициент усиления тока hFE в диапазоне 30-300, что позволяет эффективно усиливать входной сигнал и контролировать нагрузку.
  6. Использование транзистора D1415 требует соблюдения определенных правил для избегания перенапряжений, перегрева и деградации производительности. Рекомендуется следовать указаниям производителя и стандартным методам применения транзисторов.

В целом, транзистор D1415 представляет собой надежное и мощное устройство с широким спектром применения. Его технические характеристики и возможности позволяют использовать его в различных электронных схемах и устройствах, где требуется контроль сигнала, усиление или коммутация.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: