Биполярный транзистор 2SC1384 — описание производителя. Основные параметры. Даташиты.
Наименование производителя: 2SC1384
Тип материала: Si
Полярность: NPN
Максимальная рассеиваемая мощность (Pc): 0.75
W
Макcимально допустимое напряжение коллектор-база (Ucb): 60
V
Макcимально допустимое напряжение коллектор-эмиттер (Uce): 50
V
Макcимально допустимое напряжение эмиттер-база (Ueb): 5
V
Макcимальный постоянный ток коллектора (Ic): 1.5
A
Предельная температура PN-перехода (Tj): 175
°C
Граничная частота коэффициента передачи тока (ft): 100
MHz
Статический коэффициент передачи тока (hfe): 60
Корпус транзистора:
2SC1384
Datasheet (PDF)
..1. Size:47K panasonic 2sc1383 2sc1384.pdf
Transistor2SC1383, 2SC1384Silicon NPN epitaxial planer typeFor low-frequency power amplification and driver amplificationUnit: mmComplementary to 2SA683 and 2SA6845.9 0.2 4.9 0.2FeaturesLow collector to emitter saturation voltage VCE(sat).Complementary pair with 2SA683 and 2SA684.0.7 0.1Absolute Maximum Ratings (Ta=25C)2.54 0.15Parameter Symbol Ratings Unit
..2. Size:276K utc 2sc1384.pdf
UNISONIC TECHNOLOGIES CO., LTD 2SC1384 NPN SILICON TRANSISTOR NPN SILICON TRANSISTOR DESCRIPTION The UTC 2SC1384 is power amplifier and driver. FEATURES * Low VCE(SAT) * 2~3W output in complementary pair with 2SA684 ORDERING INFORMATION Ordering Number Pin Assignment Package Packing Lead Free Halogen-Free 1 2 3- 2SC1384G-x-AB3-R SOT-89 B C E Tape Reel2SC138
..3. Size:377K jiangsu 2sc1383 2sc1384.pdf
JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD TO-92L Plastic-Encapsulate Transistors2SC1383 TRANSISTOR (NPN)2SC1384 TO-92L FEATURES Low Collector to Emitter Saturation Voltage VCE(sat).1.EMITTER Complementary Pair with 2SA0683 and 2SA0684.2.COLLECTOR 3.BASE C1383=Device code C1383Solid dot = Green molding compound device, Equivalent Circuit if none,
..4. Size:193K lzg 2sc1384 3da1384.pdf
2SC1384(3DA1384) NPN /SILICON NPN TRANSISTOR : Purpose: AF power amplifier and driver applications. :, 2SA684(3CA684) 23 Features: Low V ,23W output in complementary pair with 2SA684(3CA684). CE(sat)/Absolute maximum ratings(Ta=25)
..5. Size:166K tgs 2sc1383 2sc1384.pdf
TIGER ELECTRONIC CO.,LTD TO-92L Plastic-Encapsulate Transistors 2SC1383 TRANSISTOR (NPN) TO-92L 2SC1384 FEATURES 1.EMITTER Low collector to emitter saturation voltage VCE(sat). 2.COLLECTOR Complementary pair with 2SA0683 and 2SA0684. 3.BASE MAXIMUM RATINGS (TA=25 unless otherwise noted) Symbol Parameter 2SC1383 2SC1384 UnitsVCBO Collector-Base Voltage 30 60 V
0.1. Size:245K lge 2sc1383-2sc1384.pdf
2SC1383/2SC1384 TO-92L Transistor (NPN)TO-92L1.EMITTER 2.COLLECTOR 3.BASE 4.700 2 3 5.1001Features Low collector to emitter saturation voltage VCE(sat). 7.8008.200 Complementary pair with 2SA0683 and 2SA0684. 0.6000.800MAXIMUM RATINGS (TA=25 unless otherwise noted) Symbol Parameter 2SC1383 2SC1384 Units0.350VCBO Collector-Base Voltage 30 60 V 0.550
0.2. Size:245K lge 2sc1383-2sc1384 to-92mod.pdf
2SC1383/2SC1384 TO-92MOD Transistor (NPN)1.EMITTER TO-92MOD2.COLLECTOR 1 23.BASE 3 Features5.800 Low collector to emitter saturation voltage VCE(sat). 6.200 Complementary pair with 2SA0683 and 2SA0684. 8.4008.800MAXIMUM RATINGS (TA=25 unless otherwise noted) 0.9001.100Symbol Parameter 2SC1383 2SC1384 Units0.4000.600VCBO Collector-Base Voltage 30
0.3. Size:514K semtech st2sc1383 st2sc1384.pdf
ST 2SC1383 / 2SC1384 NPN Silicon Epitaxial Planar Transistor For low-frequency power amplification and driver Amplification. Complementary to 2SA683 to and 2SA684. On special request, these transistors can be manufactured in different pin configurations. 1. Emitter 2. Collector 3. Base TO-92 Plastic PackageAbsolute Maximum Ratings (Ta = 25) Parameter Symbol Value UnitCo
Другие транзисторы… 2SC1378
, 2SC1379
, 2SC138
, 2SC1380
, 2SC1380A
, 2SC1381
, 2SC1382
, 2SC1383
, 2SC2073
, 2SC1385
, 2SC1385H
, 2SC1386
, 2SC1386H
, 2SC1387
, 2SC1388
, 2SC1388F
, 2SC138A
.
C5353 описание
Объем бизнеса : auto IC, digital to аналоговая схема, single chip microcomputer, фотоэлектрическая муфта, хранение, трехклеммный регулятор напряжения, SCR, полевой эффект, Шоттки, реле, резисторы конденсаторов, Световая трубка, разъемы, и другие односторонние вспомогательные услуги! Модуль датчика стука и цифровой интерфейс 13, светодио дный встроенный светодиод создают простую схему для производства ударных мигалок Если вы выбираете Бесплатная Post Доставка с незарегистрированных, там не будет отслеживания в пункт назначения,Вы должны держать в touch с местном почтовом отделении все время до доставки. Если пакет будет взиматься таможенные пошлины, мы не несем ответственности за любые таможенные пошлины или налоги на импорт.
Проектирование устойчивых к отклонениям синхронизаторов для нескольких диапазонов тактовой частоты и напряжения
Пожалуйста, используйте этот идентификатор для цитирования или ссылки на этот элемент:
Название: | Проектирование вариоустойчивых синхронизаторов для нескольких областей тактовой частоты и напряжения | |||||||||||
Авторы: 9 90 00 , Мохаммед Салех Абдулла | ||||||||||||
Дата выпуска: | 2014 | |||||||||||
Издатель: | Newcastle University | |||||||||||
Аннотация: | Изменчивость параметров все больше влияет на характеристики электронных схем, поскольку технология изготовления достигла уровня 32 нм и выше. Эти параметры могут включать параметры транзисторного процесса (такие как пороговое значение напряжение), напряжение питания и температура (PVT), все из которых могут иметь существенное влияние на скорость и энергопотребление схемы, особенно если отклонения превышают расчетные пределы. Поскольку системы разработаны с более асинхронных протоколов, необходимы высоконадежные синхронизаторы и арбитры. Эти компоненты часто используются в качестве интерфейсов между коммуникационными ссылки различных временных доменов, а также устройства выборки для асинхронного входные данные, поступающие от внешних компонентов. Эти приложения создали потребность для новых надежных конструкций синхронизаторов и арбитров, которые могут выдерживать процесс, перепады напряжения и температуры. Цель этого исследования состояла в том, чтобы исследовать, как должны работать синхронизаторы и арбитры. спроектированы таким образом, чтобы выдерживать параметрические изменения. Все исследования были сосредоточены в основном на конструкции на уровне схемы и на уровне транзисторов, которые были смоделированы и смоделированы в UMC90-нанометровый технологический процесс CMOS. Аналоговое моделирование использовалось для измерения временные параметры и энергопотребление вместе со статистикой «Монте-Карло» анализ для учета изменений процесса. В первую очередь исследовались два основных компонента синхронизаторов и арбитров: триггер и элемент взаимного исключения (MUTEX). Оба компонента могут нарушать входные временные условия, установка и удержание времени окна, что может привести к метастабильны внутри их бистабильных элементов и, возможно, заканчиваются отказами. средняя наработка на отказ — важная характеристика надежности любого синхронизатора задержка через синхронизатор. Исследование MUTEX было сосредоточено на классической схеме, в дополнение к ряду толерантность, основанная на увеличении внутреннего усиления за счет добавления источников тока, уменьшения емкостная нагрузка, повышающая крутизну защелки, компенсирующая существующую емкость Миллера и добавление асимметрии для управления метастабильным точка. Результаты показали, что в некоторых схемах улучшения были незначительными или почти отсутствовали. в то время как пять методов показали значительные улучшения за счет снижения τ и сохранение высокой толерантности. Предлагаются три подхода к проектированию для обеспечения устойчивости к вариациям. синхронизаторы. виляющий синхронизатор, предложенный в первую очередь, значительно повысить надежность по сравнению с обычным синхронизатором с двумя триггерами. надежность метода виляния может быть повышена за счет использования надежных τ-защелок или добавление еще одного цикла синхронизации. Второй подход заключается в Защелка автоматического обнаружения и исправления метастабильности (MADAC), которая быстро обнаружение метастабильного события и его исправление путем принудительного применения ранее сохраненного логическое значение. Этот метод значительно сокращает время разрешения с неуверенный Метод синхронизации предлагается для передачи сигналов между несколькими Многотактовые домены напряжения (MVD/MCD), которые не требуют обычных переключатели уровня между доменами или несколько источников питания в каждом домен. Эта схема интерфейса использует протокол синхронного набора и сброса обратной связи. который обеспечивает сдвиг уровня и синхронизацию всех сигналов между домены, из широкого диапазона напряжений питания и тактовых частот. В целом, схемы синхронизатора могут в большей степени выдерживать изменения за счет используя технику виляния или защелку MADAC, в то время как допуск MUTEX может быть достаточно с небольшими изменениями схемы. Связь между МВД/МКД может быть достигнуто асинхронным рукопожатием без необходимости добавления переключателей уровня. |
|||||||||||
Описание: | PhD Тезис | |||||||||||
URI: | http://hdl.handle.net/10443/2482 | |||||||||||
Появляется в коллекциях: | School of Electrical и Electronic Engineering | |||||||||||
. |
Показать полную запись товара
Элементы в DSpace защищены авторским правом, все права защищены, если не указано иное.
Основные технические характеристики
13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.
Предельные режимы эксплуатации
13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.
Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%
Электрические характеристики
Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.
Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.
Datasheet Download — Toshiba Semiconductor
Номер произв | C2482 | ||
Описание | 2SC2482 | ||
Производители | Toshiba Semiconductor | ||
логотип | |||
1Page
TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT Process) • High breakdown voltage: VCEO = 300 V • Small collector output capacitance: Cob = 3.0 pF (typ.) • Recommended for chroma output and driver applications for line-operated TV horizontal. Maximum Ratings (Ta = 25°C) Characteristics VCBO VCEO VEBO IC IB PC Tj Tstg Rating −55 to 150 Unit Electrical Characteristics (Ta = 25°C) Characteristics ICBO IEBO hFE (1) hFE (2) VCE (sat) VBE (sat) fT Cob Test Condition VCB = 240 V, IE = 0 VEB = 7 V, IC = 0 VCE = 10 V, IC = 4 mA VCE = 10 V, IC = 20 mA IC = 10 mA, IB = 1 mA IC = 10 mA, IB = 1 mA VCE = 10 V, IC = 20 mA VCB = 20 V, IE = 0, f = 1 MHz JEDEC ― ― 1.0 µA ― ― 1.0 µA 20 ― ― 30 ― 150 ― ― 1.0 V ― ― 1.0 V 50 ― ― MHz ― 3.0 ― pF Marking
120
100 IC – VCE 6 Collector-emitter voltage VCE (V) 24 hFE – IC Common emitter Collector current IC (mA) 100 hFE – IC Common emitter 25 −25 1 3 10 30 Collector current IC (mA) 100 VCE (sat) – IC Common emitter Collector current IC (mA) 100 VCE (sat) – IC Common emitter −25 25 1 3 10 30 Collector current IC (mA) 100 VBE (sat) – IC Common emitter Collector current IC (mA) 100
100
Common emitter IC – VBE 60 −25 40 0.2 0.4 0.6 0.8 1.0 1.2 Base-emitter voltage VBE (V) Cob – VCB 100 50 f = 1 MHz Ta = 25°C Collector-base voltage VCB (V) 100 fT – IC Common emitter Collector current IC (mA) 100 IC max (pulsed)* 300 µs* IC max (continuous) 10 ms* 100 ms* 50 500 ms* 30 *: Single nonrepetitive pulse 5 Ta = 25°C Curves must be derated linearly with Collector-emitter voltage VCE (V) 3 2004-07-26 |
|||
Всего страниц | 4 Pages | ||
Скачать PDF |
Туннельные транзисторы
Одной из главных задач производителей полупроводниковых устройств является проектирование транзисторов, которые можно переключать малыми напряжениями. Решить её способны туннельные транзисторы. Такие устройства управляются с помощью квантового туннельного эффекта. Таким образом, при наложении внешнего напряжения переключение транзистора происходит быстрее, так как электроны с большей вероятностью преодолевают диэлектрический барьер. В результате устройству требуется в несколько раз меньшее напряжение для работы.
Разработкой туннельных транзисторов занимаются ученые из МФТИ и японского университета Тохоку. Они использовали двухслойный графен, чтобы создать устройство, которое работает в 10–100 раз быстрее кремниевых аналогов. По словам инженеров, их технология позволит спроектировать процессоры, которые будут в двадцать раз производительнее современных флагманских моделей.
/ фото PxHere PD
В разное время прототипы туннельных транзисторов реализовывались с использованием различных материалов — помимо графена, ими были нанотрубки и кремний. Однако технология до сих пор не покинула стены лабораторий, и о масштабном производстве устройств на её основе речи не идет.
Разделы справочника:
Добавить описание биполярного транзистора.Добавить описание полевого транзистора.Добавить описание биполярного транзистора с изолированным затвором.Поиск биполярного транзистора по основным параметрам.Поиск полевого транзистора по основным параметрам.Поиск БТИЗ (IGBT) по основным параметрам.Поиск транзистора по маркировке.Поиск корпуса электронного компонента. Узнать размеры транзистора.Добавить чертёж транзистора.Параметры транзисторов биполярных низкочастотных npn.Параметры транзисторов биполярных низкочастотных pnp.Параметры транзисторов биполярных высокочастотных npn.Параметры транзисторов биполярных высокочастотных pnp.Параметры транзисторов биполярных сверхвысокочастотных npn.Параметры транзисторов биполярных сверхвысокочастотных pnp.Параметры полевых транзисторов n-канальных.Параметры полевых транзисторов p-канальных.Параметры биполярных транзисторов с изолированным затвором (БТИЗ, IGBT).
Cправочник характеристик транзисторов ПАРАТРАН полезен опытным и начинающим радиолюбителям, профессионалам в сфере электроники, конструкторам, ученикам школ и студентам высших учебных заведений, где преподаются дисциплины по электронным приборам. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов, выпускаемых промышленностью. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте».
Если Вы заметили ошибку, огромная просьба написать письмо.
Спасибо за терпение и сотрудничество.
Транзистор C5353 ничего хорошего не принес и плохого
Новые книги Шпионские штучки: Новое и лучшее схем для радиолюбителей: Шпионские штучки и не только 2-е издание Arduino для изобретателей. Обучение электронике на 10 занимательных проектах Конструируем роботов. Руководство для начинающих Компьютер в лаборатории радиолюбителя Радиоконструктор 3 и 4 Шпионские штучки и защита от них. Сборник 19 книг Занимательная электроника и электротехника для начинающих и не только Arduino для начинающих: самый простой пошаговый самоучитель Радиоконструктор 1 Обновления Подавитель сотовой связи большой мощности. Перед тем как создавать тему на форуме, воспользуйтесь поиском! Пользователь создавший тему, которая уже была, будет немедленно забанен!
Схема NPN транзистора
Когда NPN транзистор связан с ресурсами напряжения, базовый ток будет проходить через транзистор. Даже небольшое количество базы контролирует циркуляцию большого количества тока через эмиттер к коллектору. Напряжение базы выше, чем напряжение на эмиттере.
Когда VB базовое напряжение не -ve по сравнению с VE напряжение эмиттера, ток не может проходить в цепи. Таким образом, необходимо обеспечить подачу напряжения обратного смещения> 0.72 Вольт.
Резисторы RL и RB включены в цепь. Это ограничивает ток, проходящий через максимально возможную высоту транзистора.
Напряжение эмиттера VEB как входная сторона. Здесь ток эмиттера (IE) течет со стороны входа и течет в двух направлениях; один яB а другое это яC.
IE= ЯB+ ЯC
Что такое NPN транзистор?
Транзисторы вытеснили электролампы, позволили уменьшить количество реле, переключателей в устройствах. Это полупроводниковые триоды — радиоэлектронные компоненты из полупроводников, стандартно имеют 3 вывода.
Транзисторы, предназначенные для управления током, то есть основным силовым фактором электросхем, именно его удар (не напряжения) несет опасность для человека.
Элемент способен контролировать чрезвычайно высокие величины в выходных цепях при подаче слабого входного сигнала. Транзисторы повышают, генерируют, коммутируют, преобразовывают электросигналы, это основа микроэлектроники, электроустройств.
Разновидности по принципу действия:
- биполярный транзистор из 2 типов проводников, в основе функционирования – взаимодействие на кристалле соседних p-n участков. Состоят из эмиттера/коллектора/базы (далее, эти термины будем сокращать): на последнюю идет слабый ток, вызывающий модификацию сопротивления (дальше по тексту «сопр.») в линии, состоящей из первых 2 элементов. Таким образом, протекающая величина меняется, сторона ее однонаправленности (n-p-n или p-n-p) определяется характеристиками переходов (участков) в соответствии с полярностью подключения (обратно, прямо). Управление осуществляется модулированием тока на сегменте база/эмит., вывод последнего всегда общий для сигналов управления и выхода;
- полевой. Тип проводника один — узкий канал, подпадающий под электрополе обособленного затворного прохода. Контроль основывается на модуляции количества Вольт между ним и истоком. А между последним и стоком течет электроток (2 рабочие контакты). Величина имеет силу, зависящую от сигналов, формируемых между затвором (контакт контроля) и одной из указанных частей. Есть изделия с p-n участком управления (рабочие контакты подключаются к p- или n-полупроводнику) или с обособленными затворами.
У полевиков есть варианты полярности, для управления требуется низкий вольтаж, из-за экономичности их ставят в радиосхемы с маломощными БП. Биполярные варианты активируются токами. В аналоговых сборках превалируют вторые (БТ, BJT), в цифровых (процессоры, компьютеры) — первые. Есть также гибриды — IGBT, применяются в силовых схемах.
Hoja de datos ( техническое описание в формате PDF ) электронных компонентов
Номер пьезы
Описание
Фабрикантес
ПДФ
18П06П
Силовой транзистор SIPMOS
Инфинеон
ПДФ
32304118
ИС магниторезистивных датчиков
Ханивелл
ПДФ
Ач4775
ВЫСОКОВОЛЬТНАЯ ЗАЩЕЛКА С ЭФФЕКТОМ ХОЛЛА СРЕДНЕЙ ЧУВСТВИТЕЛЬНОСТИ
Диоды
ПДФ
Ач4776
ВЫСОКОЧУВСТВИТЕЛЬНАЯ ЗАЩЕЛКА С ЭФФЕКТОМ ХОЛЛА
Диоды
ПДФ
Ач4777
ВЫСОКОЕ НАПРЯЖЕНИЕ НИЗКОЧУВСТВИТЕЛЬНАЯ ЗАЩЕЛКА С ЭФФЕКТОМ ХОЛЛА
Диоды
ПДФ
Ач4782
ВЫСОКОЧУВСТВИТЕЛЬНАЯ ЗАЩЕЛКА С ЭФФЕКТОМ ХОЛЛА
Диоды
ПДФ
AH9247
Высокочувствительный микромощный омниполярный переключатель на эффекте Холла
КБД
ПДФ
AH9251
СРЕДНЯЯ ЧУВСТВИТЕЛЬНОСТЬ МИКРОМОЩНЫЙ ВСЕПОЛЯРНЫЙ ПЕРЕКЛЮЧАТЕЛЬ С ЭФФЕКТОМ ХОЛЛА
Диоды
ПДФ
АИС3624ДК
Высокопроизводительный датчик движения
STMicroelectronics
ПДФ
АК7401
Датчик поворотного положения IC
АКМ
ПДФ
АМС3108
Микромощный 700 мА малошумящий LDO с быстрой переходной характеристикой
Передовые монолитные системы
ПДФ
АМС3121
2A Линейный регулятор с быстрым переходным процессом
Передовые монолитные системы
ПДФ
АС-3224
Аудио тороидальные трансформаторы
АнТек
ПДФ
БД6701Ф
Драйверы двухфазных полноволновых бесщеточных двигателей вентиляторов постоянного тока
РОМ Полупроводник
ПДФ
Маркировка
Маркируется на корпусе цифрами “13003”, указывающими на серийный номер устройства по системе JEDEC. Префикс MJE, в начале указывает на происхождение устройства у именитого брэнда — компании Motorola. В настоящее время префикс mje в обозначении своей продукции добавляют и другие производители радиоэлектронного оборудования. Так что, не удивительно встретить транзистор с таким префиксом от другого компании.
Также, вместо MJE, но с другими буквами в названиях, могут встречается похожие устройства: ST13003 SOT-32 (ST Microelectronics), FJP13003, KSE 13003 (Fairchild). В последнее время стали встречается копии устройств от китайских компаний с такой маркировкой на корпусе: 13003d, 13003br, j13003, e13003. В большинстве случаев у приборов с буквой “d” в конце есть встроенный защитный диод, а у остальных меньшая мощность до 25 Вт.
Справка об аналогах биполярного низкочастотного npn транзистора 2SC2922.
Эта страница содержит информацию об аналогах биполярного низкочастотного npn транзистора 2SC2922 .Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора.Можно попробовать заменить транзистор 2SC2922транзистором 2N6675;
транзистором 2SC2565;
транзистором 2SC2766;
транзистором ECG33;
транзистором
транзистором 2SC2774;
транзистором 2SC2766;
транзистором 2SC2921;
транзистором 2SC2565;
транзистором ECG33;
транзистором ECG58;
Металл-воздушные транзисторы
По своей сути принципы работы и конструкция металл-воздушного транзистора напоминает транзисторы MOSFET. За некоторыми исключениями: стоком и истоком нового транзистора являются металлические электроды. Затвор устройства расположен под ними и заизолирован оксидной пленкой. Сток и исток установлены друг от друга на расстоянии тридцати нанометров, что позволяет электронам свободно проходить сквозь воздушное пространство. Обмен заряженными частицами происходит за счет автоэлектронной эмиссии.
Разработкой металл-воздушных транзисторов занимается команда из университета в Мельбурне — RMIT. Инженеры говорят, что технология «вдохнет новую жизнь» в закон Мура и позволит строить целые 3D-сети из транзисторов. Производители чипов смогут перестать заниматься бесконечным уменьшением техпроцессов и займутся формированием компактных 3D-архитектур.
Сейчас команда ищет инвесторов, чтобы продолжить свои исследования и разрешить технологические сложности. Электроды стока и истока плавятся под воздействием электрического поля — это снижает производительность транзистора. Недостаток планируют поправить в ближайшие пару лет. После этого инженеры начнут подготовку к выводу продукта на рынок. О чем еще мы пишем в нашем корпоративном блоге:
- VMware EMPOWER 2021: делимся впечатлениями
- Перспективы дата-центров: технологии, которые повысят производительность серверов
- Процессоры для серверов: обсуждаем новинки
- Развитие дата-центров: технологические тренды
- Как повысить энергоэффективность дата-центра
- Как разместить 100% инфраструктуры в облаке IaaS-провайдера и не пожалеть об этом
- «Как дела у VMware»: обзор новых решений
О транзисторе
Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.
Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. В таблице ниже представлена цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.
Таблица маркировки маломощных среднечастотных и высокочастотных транзисторов.
Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления.
Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N.
На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход.
Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.
Для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h21э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.
Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода. В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.
Современный многофункциональный мультиметр.
Проверка работоспособности транзистора
Подключаем на базу полевого транзистора плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение. Затем минусовым щупом подключаем к выводу эмиттера и измеряем. Если переходы транзистора не пробиты, то падение напряжения на коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.
Будет интересно Варианты схем подключения проходных выключателей
Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.
Теперь произведём обратное измерение коллекторного и эмиттерного перехода.
Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует.
Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства.
При этом во многих случаях можно обойтись и без выпаивания его из платы.
Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением.
Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.