Аналоги
Для замены могут подойти транзисторы кремниевые, со струкрурой NPN, эпитаксиально-планарные, предназначенные для применения в схемах усилителей низкой частоты, дифференциальных и операционных усилителей.
Отечественное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130 | 80 | 3,5 | — | ≤ 0,25 | SOT-23 |
КТ3102А | 0,25 | 50 | 50 | 5 | 0,1 | — | 100…200 | 150 | ≤ 6 | 10 | — | ТО-92, ТО-18 |
КТ3102Б | 0,25 | 50 | 50 | 5 | 0,1 | — | 200…500 | 150 | ≤ 6 | 10 | — | ТО-92, ТО-18 |
КТ602А/Б | 0,85 | 120 | 100 | 5 | 0,075 | 150 | 20…80 | 150 | ≤ 4 | — | ≤ 3,0 | ТО-126 |
КТ602В/Г | 0,85 | 80 | 70 | 5 | 0,075 | 150 | 15…80 | 150 | ≤ 4 | — | ≤ 3,0 | ТО-126 |
КТ611А/Б | 0,8 | 200 | 180 | 4 | 0,1 | 150 | 10…120 | ≥ 60 | ≤ 5 | — | ≤ 0,8 | ТО-126 |
КТ611В/Г | 0,8 | 180 | 180 | 4 | 0,1 | 150 | 10…120 | ≥ 60 | ≤ 5 | — | ≤ 0,8 | ТО-126 |
КТ660А | 0,5 | 50 | 45 | 5 | 0,8 | 150 | 110…220 | ≥ 200 | ≤ 10 | — | ≤ 0,5 | ТО-92 |
Зарубежное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус | Маркировка |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2SC1815 | 0,4 | 60 | 50 | 5 | 0,15 | 150 | 70…700 | 80 | ≤ 3,5 | 1…10 | 0,25 | TO-92 | — |
CSC3114/R | 0,4 | — | 50 | — | 0,15 | — | 100 | 100 | ≤ 3,5 | ≤ 100 | ≤ 0,25 | TO-92 | — |
CSC3114S | 0,4 | — | 50 | — | 0,15 | — | 140 | 100 | — | — | — | TO-92 | — |
CSC3114V | 0,4 | — | 50 | — | 0,15 | — | 280 | 100 | — | — | — | TO-92 | — |
CSC3199 | 0,4 | — | 50 | — | 0,15 | — | 70…700 | 80 | — | — | — | TO-92 | — |
CSC3331/R/S/T | 0,5 | — | 50 | — | 0,2 | — | 70 | 200 | — | — | — | TO-92 | — |
CSC3331TU/U/V | 0,5 | — | 50 | — | 0,2 | — | 70 | 200 | — | — | — | TO-92 | — |
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130 | 80 | — | — | 0,25 | SOT-23 | HF |
2N5551SC | 0,35 | 180 | 160 | 6 | 0,6 | 150 | 150 | 100 | ≤ 6 | ≤ 8 | ≤ 0,5 | SOT-23 | ZFC |
2PD601BRL | 0,25 | 60 | 50 | 6 | 0,2 | 150 | 210 | 100 | ≤ 3 | — | ≤ 0,25 | SOT-23 | ML٭ |
2PD601BSL | 0,25 | 60 | 50 | 6 | 0,2 | 150 | 290 | 100 | ≤ 3 | — | ≤ 0,25 | SOT-23 | MM٭ |
2PD602ASL | 0,25 | 60 | 50 | 5 | 0,5 | 150 | 170 | 180 | ≤ 15 | — | ≤ 0,6 | SOT-23 | SF |
2SC2412-R | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 180 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BR |
2SC2412-S | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 270 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BS |
2SC945LT1 | 0,23 | 60 | 50 | 5 | 0,15 | 150 | 200 | 150 | ≤ 3,5 | — | ≤ 0,3 | SOT-23 | L6 |
2STR1160 | 0,5 | 60 | 50 | 5 | 1 | 150 | 250 | 150 | ≤ 3,5 | — | ≤ 0,43 | SOT-23 | 160 |
BCV47 | 0,36 | 80 | 60 | 10 | 0,5 | 150 | 10000 | 170 | ≤ 3,5 | — | ≤ 1,0 | SOT-23 | DK, FG, FGp, FGs, FGt, W |
BTC2412N3 | 0,225 | 60 | 50 | 7 | 0,2 | 150 | 180 | 80 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | C4 |
BTD2150N3 | 0,225 | 80 | 50 | 6 | 4 | 150 | 270 | 175 | 14 | — | ≤ 0,32 | SOT-23 | CF |
BTN6427N3 | 0,225 | 100 | 60 | 12 | 0,5 | 150 | 10000 | ≤ 7 | — | ≤ 1,5 | SOT-23 | 1N | |
CMPT3820 | 0,35 | 80 | 60 | 5 | 1 | 150 | 200 | 150 | ≤ 10 | — | ≤ 0,28 | SOT-23 | 38C |
CMPT491E | 0,35 | 80 | 60 | 5 | 1 | 150 | 200 | 150 | ≤ 10 | — | ≤ 0,4 | SOT-23 | C49 |
INC5001AC1 | 0,2 | 80 | 60 | 5 | 1 | 150 | 130 | 240 | ≤ 10 | — | ≤ 0,25 | SOT-23 | XY |
INC5006AC1 | 0,2 | 100 | 50 | 7 | 3 | 150 | 400 | 250 | 13 | — | ≤ 0,2 | SOT-23 | CER |
KMMT619 | 0,35 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 20 | — | ≤ 0,5 | SOT-23 | 619, 619H |
KST6428 | 0,35 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | — | SOT-23 | 1K |
L2SC1623RLT1G | 0,225 | 60 | 50 | 7 | 0,15 | 150 | 180 | 250 | ≤ 3 | — | ≤ 0,3 | SOT-23 | L6 |
L2SC1623SLT1G | 0,225 | 60 | 50 | 7 | 0,15 | 150 | 270 | 250 | ≤ 3 | — | ≤ 0,3 | SOT-23 | L7 |
L2SC2412KRLT1G | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 180 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BR |
L2SC2412KSLT1G | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 270 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | G1F |
L2SC5343RLT1G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 180 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 7R |
L2SC5343SLT1G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 270 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 7S |
LMBT6428LT1G | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | ≤ 0,5 | SOT-23 | 1KM | |
MMBT5343-G/L | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 5343 |
MMBT6428 | 0,3 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,6 | SOT-23 | 1K, 1KM |
MMBT6428L/LT1/LT1G | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,6 | SOT-23 | 1KM |
MMBT945-H/L | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200/130 | 150 | ≤ 3 | — | ≤ 0,3 | SOT-23 | CR |
MMBTA28 | 0,35 | 80 | 80 | 12 | 0,8 | 150 | 10000 | 125 | ≤ 8 | — | ≤ 1,5 | SOT-23 | 3SS K6R |
NXP3875G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | ٭JF |
PBSS4041NT | 0,3 | 60 | 60 | 5 | 3,8 | 150 | 300 | 175 | 17 | — | ≤ 0,3 | SOT-23 | ٭BK |
PBSS4160T | 0,3 | 80 | 60 | 5 | 1 | 150 | 250 | 150 | ≤ 10 | — | ≤ 0,25 | SOT-23 | ٭U5 |
PBSS8110T | 0,3 | 120 | 100 | 5 | 1 | 150 | 150 | 100 | ≤ 7,5 | — | ≤ 0,2 | SOT-23 | ٭U8 |
SSTA28 | 0,2 | 80 | 80 | 12 | 0,3 | 150 | 10000 | 200 | ≤ 8 | — | ≤ 1,5 | SOT-23 SST3 | RAT |
TMPS1654N7 | 0,225 | 80 | 160 | 5 | 0,15 | 150 | 150 | 100 | ≤ 8 | — | ≤ 1,5 | SOT-23 | N7 |
TMPT6428 | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,2 | SOT-23 | 1K |
Примечание: данные в таблицах взяты из даташип компаний-производителей.
Зарождение нового мира
В то время как Бардин бросил Bell Labs, чтобы стать академиком (он продолжил изучение германиевых транзисторов и сверхпроводников в Иллинойском университете), Браттэйн поработал еще некоторое время, а после ушел в педагогику. Шокли основал свою собственную компанию по производству транзисторов и создал уникальное место — Силиконовую долину. Это процветающий район в Калифорнии вокруг Пало-Альто, где находятся крупные корпорации электроники. Двое из его сотрудников, Роберт Нойс и Гордон Мур, основали компанию Intel — крупнейшего в мире производителя микросхем.
Бардин, Браттэйн и Шокли ненадолго воссоединились в 1956 году: за свое открытие они получили высшую в мире научную награду — Нобелевскую премию по физике.
Маркировка IRF3205
В маркировке данного транзистора первые две буквы (IR) означают первого производителя — International Rectifier. Сейчас этот транзистор выпускается многими компаниями, но именно с этой началась история этого компонента.
Помимо оригинальной версии, на данный момент существует еще и бессвинцовая версия, которая помечается постфиксом “Z” — (IRF3205Z), но раньше обозначение выглядело по-другому, а именно — “PbF”, что расшифровывается как Plumbum Free.
А также существуют версии в других корпусах: IRF3205ZL — TO262 (припаивание стока-радиатора к плате для охлаждения) и IRF3205ZS — D2Pak (для поверхностного монтажа).
TO262 и D2Pak, который иначе называется TO263, отличаются тем, что первый предназначен для монтажа в отверстия на плате, после чего загибается и припаивается радиатором к ней же. TO263, в свою очередь, не требует отверстий и обладает короткими выводами, что позволяет использовать его при поверхностном монтаже на небольших платах.
↑ Техническое задание
Как всегда, считаю, что любительская конструкция, как правило, должна быть простой, дешевой, технологичной, состоять из недефицитных деталей. Кроме того, я давно пришел к выводу, что для подобных целей лучше делать небольшие простые платы без блока питания, без цифрового индикатора, без сложного корпуса. Достаточно предусмотреть зажимы для подключения внешнего лабораторного регулируемого блока питания, индикатора в виде простого цифрового тестера или стрелочного прибора, при необходимости — осциллографа и т. п.
Такие приборы быстро делаются и переделываются, а главное — они работают и приносят пользу. Если же задумать многофункциональный самодостаточный прибор в отдельном красивом корпусе, он обычно так и останется в прожектах. Кроме того, если прибор сделан, вдруг оказывается, что надо добавить еще одну функцию, например, капацитовизор, а места на передней панели уже нет и дизигн надо портить… Поэтому я считаю, что неказистые любительские узкофункциональные изделия имеют право на жизнь.
Итак, задумана проверка кремниевых транзисторов в режиме — ток 200 мА, напряжение К-Э = 2 В. Оперативно можно изменять ток в диапазоне примерно 150…300 мА, напряжение К-Э до 5…7 В. Можно проверять (чуть изменив настройки) составные транзисторы с двумя последовательными P-N переходами.
Тумблером можно изменить ток, например, в 10 раз. Это позволит проверять и маломощные транзисторы при токе 15…30 мА (заменой одного резистора можно установить любой разумный ток). Важным считаю удобство подключения любых транзисторов. Для транзисторов КТ814-819 на плате стоят панельки, для мощных транзисторов в корпусах типа ТО-247, ТО-3Р, есть зажимы. В них устанавливают провода с «крокодилами», которые позволяют подключать транзисторы в корпусе ТО-3, любые транзисторы с гнутыми паяными выводами и т. д.
Изменение напряжения К-Э осуществляется внешним источником питания, цель – проверка идентичности режимов при большем напряжении и значительном нагреве транзисторов. При 5 В и 200 мА получаем предельную мощность для КТ814 без теплоотвода — 1 Вт. Для бОльших корпусов без теплоотводов тепловая мощность обычно = 2 Вт.
Легко заметить, что усиление транзистора зависит в некоторых пределах как от напряжения, так и от температуры, поэтому определение абсолютного значения усиления транзистора с помощью микропроцессора с точностью до седьмого знака, не имеет смысла. По этой причине выбрано простейшее схемное решение, которое дает достаточную для практики точность и позволяет обойтись без ОУ, МК и нескольких источников питания. Для измерения тока базы годится любой цифровой тестер, например, М-832.
Графические иллюстрации характеристик
Рис. 1. Внешняя характеристика транзистора в схеме с общим эмиттером. Зависимость коллекторной нагрузки IC от напряжения коллектор-эмиттер UCE при различных токах (управления) базы IB.
Рис. 2. Зависимость статического коэффициента усиления по току от коллекторной нагрузки IC.
Зависимость снята при импульсном напряжении коллектор-эмиттер UCE = 5 В.
Рис. 3. Зависимости напряжений насыщения коллектор-эмиттер UCE(sat) и эмиттер-база UBE(sat) от величины коллекторной нагрузки IC.
Зависимость снята при соотношении амплитуд импульсов токов коллектора и базы IC/IB = 5.
Рис. 4. Снижение предельной токовой нагрузки IC в области безопасной работы транзистора при увеличении температуры корпуса прибора TC.
Кривая «Dissipation Limited» — снижение токовой нагрузки в результате общего перегрева п/п структуры.
Кривая «S/b Limited» — снижение токовой нагрузки для исключения вторичного пробоя п/п структуры локально, в местах повышенной плотности тока.
Определение теплового режима транзистора во многом сводится к определению рассеиваемой мощности и соотнесению её с областью безопасной работы транзистора (ОБР). Для транзистора, работающего в ключевом режиме, приходится учитывать потери на коммутационных интервалах, а также ряд особенностей, определяемых реактивными свойствами коллекторной цепи и источника питания.
Рис. 5. Область безопасной работы транзистора, определена при температуре среды Ta = 25°С при нагрузке транзистора одиночными импульсами (Single Pulse) различной длительности: PW = 10 мкс; 50 мкс; 100 мс; 300 мкс; 1,0 мс; 10 мс; 100 мс.
Выделяются 4 участка ограничивающих линий предельного тока коллектора:
- горизонтальный – предельный ток транзистора, определяющий устойчивость паяных соединений. При возрастании температуры корпуса вводится поправка согласно графику Рис. 4;
- участок «Dissipation Limited» – предельный ток, ограничивающий общий нагрев п/п структуры;
- участок «S/b Limited» — ограничение тока исходя из недопущения вторичного пробоя п/п структуры;
- вертикальный участок – предельное напряжение коллектор-эмиттер, не приводящее к лавинному пробою п/п структуры.
Характеристики ОБР по Рис. 5 подходят для анализа безопасной работы транзистора при резистивном или емкостном характере нагрузки, а также при любой нагрузке на интервале проводимости (ton). См. диаграмму тока коллектора в импульсном режиме выше.
В схеме с индуктивной нагрузкой на коммутационном интервале (tstg + tf), при восстановлении непроводящего состояния, возникающие на транзисторе пиковые перенапряжения могут превышать критические значения и вызвать пробой п/п структуры. Для уменьшения перенапряжений вводятся ограничители напряжения: снабберные RC-цепи, активные ограничители и т. п. Для уменьшения потерь (уменьшения длительности коммутационного интервала) в цепь управления (базы) транзистора вводится отрицательное напряжение смещения.
Увеличение напряжений при вводе отрицательного смещения и ограничение коллекторного тока отражаются на конфигурации ОБР. Такая ОБР является неотъемлемой характеристикой работы транзистора в переключающем режиме с индуктивной нагрузкой.
Рис. 6. Область безопасной работы с обратным смещением. Характеристика снята при условии Tc ≤ 100°C.
Увеличение UCEX(sus) при значительном ограничении тока коллектора – результат ввода ограничителей коммутационных перенапряжений до уровня 450 В.
Условиями безопасной (корректной) работы транзистора в ключевом режиме является выполнение следующих условий:
- непревышение температурных ограничений по структуре в целом;
- токи и напряжения на интервале включения (ton) не превышают ограничений ОБР;
- токи и напряжения на интервале выключения (tstg + tf) не превышают ограничений ОБР с обратным смещением.
Недостатки
Какие недостатки есть у импульсных реле? Некоторые модели
отдельных производителей чувствительны к перепадам напряжения.
Чем это чревато? А тем, что свет на некоторых лампах у вас будет включаться и выключаться самопроизвольно при нестабильном напряжении.
Еще многих раздражает постоянное клацанье и щелчки при работе реле. Особенно этим грешат эл.механические разновидности. Они состоят из рычажной и контактной системы, катушки, плюс пружины.
Отличить их можно по рычагу с лицевой стороны. С его
помощью реле вручную переводится из одного положения в другое.
В электронные встроена плата с микроконтроллером. В них
клацать особо нечему, и они менее шумны.
Чтобы было меньше проблем, выбирайте реле от известных и давно зарекомендовавших себя брендов. Таких как — ABB (E-290), Schneider Electric (Acti 9iTL), F&F (Biss) или отечественный Меандр (РИО-1 и РИО-2).
У ABB очень большой выбор по добавлению к основной модели E290 всяких накладок и дополнительных «плюшек».
У Меандр РИО-2 есть полезная функция для работы с обычными одноклавишными выключателями.
Для этого данную релюшку нужно перевести в режим №2 и к каждому из входов Y, Y1 и Y2 подключить свой выключатель света (всего 3шт).
В итоге вы получите режим работы перекрестных выключателей на основе обычных одноклавишников. При нажатии любого из них (вкл или выкл), будет изменяться выход и переключаться контакты на самом реле, зажигая или гася лампочку.
комплектующие для ноутбуков, кабель сетевой, полевой транзистор
Наведите курсор, чтобы увеличить
Код товара 681
-
Цена:
199,26 грн В наличии
Купить
-
Количество:
–
+ -
Общая стоимость:
-
КУПИТЬ
Пример: +38 084 1112246
Купить в 1 кликНаписать продавцу
+38 (068) 87337XX
Показать телефоны
Способы оплаты:
Наличные, Безналичный, Наложенный платеж.
Способы доставки:
Самовывоз, Доставка Укрпочтой, Новая Почта, Новая Почта (курьерська доставка), Укрпочта
Условия возврата и обмена
Описание 2SA1695+C4468 демонтаж, оригинал
2SA1695+C4468 Деталь выпаяна с платы брендового устройства, 100% оригинал.
Написать отзыв
Отзывы(0) :
2SA1695+C4468 демонтаж, оригинал
Практика работы составного транзистора
На рис. 3 показаны три варианта построения выходного каскада (эмиттерный повторитель). При подборе транзисторов надо стремится к b1~b2 и b3~b4 . Различие можно компенсировать за счёт подбора пар по равенству коэффициентов усиления СТ b13~b24 (см. табл. 1).
- Схема на рис. 3а имеет наибольшее входное сопротивление, но это худшая из приведённых схем: требует изоляцию фланцев мощных транзисторов (или раздельные радиаторы) и обеспечивает наименьший размах напряжения, поскольку между базами СТ должно падать ~2 В, в противном случае сильно проявятся искажения типа «ступенька».
- Схема на рис. 3б досталась в наследство с тех времён, когда ещё не выпускались комплементарные пары мощных транзисторов. Единственный плюс по сравнению с предыдущим вариантом – меньшее падение напряжения ~1,8 В и больше размах без искажений.
- Схема на рис. 3в наглядно демонстрирует преимущества СТШ: между базами СТ падает минимум напряжения, а мощные транзисторы можно посадить на общий радиатор без изоляционных прокладок.
На рис. 4 показаны два параметрических стабилизатора. Выходное напряжение для варианта с СТД равно:
Поскольку Uбэ гуляет в зависимости от температуры и коллекторного тока, то у схемы с СТД разброс выходного напряжения будет больше, а потому вариант с СТШ предпочтительней.
Рис. 3. Варианты выходных эмиттерных повторителей на СТ
Рис. 4. Применение СТ в качестве регулятора в линейном стабилизаторе
Для коммутации электромеханических приводов и, тем более, в импульсных схемах следует использовать готовые СТ с нормированными параметрами включения и выключения, паразитными ёмкостями. Типичный пример – широко распространённые импортные комплементарные СТД серии TIP12х.
Маркировка
Цифры “13001” на корпусе дают общее представление об этом полупроводниковом устройстве. Многие производители маркируют так свои изделия из-за отсутствия места на корпусе ТО-92, не указывая при этом префикс в начале. В статье приведены технические характеристики устройств малоизвестных в России производителей DGNJDZ, Semtech Electronics, YFWDIODE. Указанные производители в своих даташитах не указывают дополнительных символов маркировки. Без дополнительных обозначений маркирует свой транзистор TS13001 тайваньская компания TSMC. Первые две литеры “TS” являются аббревиатурой первых двух слов в полном названии компании Taiwan Semiconductor Manufacturing Company. В тоже время, на рыке достаточно широко представлены транзисторы mje13001, которые тоже промаркированы цифрами 13001. SHENZHEN JTD ELECTRONICS и многие другие производители применяют s13001 s8d при маркировке своих девайсов. Встречаются и другие префиксы, не рассмотренные в статье. Многие продавцы не заморачиваясь с маркировкой в наименовании товара, указывают все возможные его типы вместе с датой производства.
, , , 2010 10 06, 129
06 2010 (34787 )
1NT01L-C150518 L10-11 F30U60DN KIT KM002/0603 cxp2201as STK412-230 875b-1c FDD03-15S4A FL10-5050W-24-60-IP20 D 2125 TSM 0505S TA7283AP upc2500 IRFS9N60ATRLPBF TMS320F2809PZA K3255 TRCF-24VDC-SB-A xc68hc11f1b4 DC/DC 5 STK7563FE LXN1601-6R wj112-1c uc3843 BM9222 2M214 39F LG irfp250 LPV 20-24 KIT NK037 c4468 c3884a LM317MQDCYR PFN2029-NM42A GPS 58050-05 -5 5 yageo 400 470 orega 40330 -66 10nb37lz HR IP2L10003 NRC3 ANSMANN ALCS 2-24 stth3003cfp ECAP 1500/550V 64130 FX2 HIT-AIC 64130B KX-3HT 18. 432 MHz PBF ATMega8515 -16JU 220 100V 40EPS08PBF EMIT1200L 100 MC145170 atmel ALAN 78 PLUS LEMM AT-106 midland Alan 100 Plus -41 maycom Megajet MJ-3031 M 27 — , 100 m-490plus / -5 eae 600 3207 CD Booster 797 megajet PIC16F628 pic PIC16F — pic16f84a «» 2007, -126 . 1 DS1990 10 Устройство реагирует на заданную температуру и позволяет включать\выключать различные приборы. Суммарная мощность нагрузки — 120Вт. Диапаз . vizit epson 220 10 pin usb fastmean Layot 5 2009 gsm regent 2012 Dpkjv VIZIT ghjuhfvvbhjdfybt ljvajyf dbpbn 2010 ࢄ?10 Vizit AT/ATX TDA7294 hflbj qrz ru Dragn sy550 vizit 2010 10 2140 37 — ; sprint layoout 21013 — 1 . 2008, ࢄ? 12, 4 , vizit 80 vizit 62 — — Ds1669 cd el 34 50 at 1421 380 — autocad max3232 ࢄ?10 2010 qcad CD-ROM bi-amping 232 ttl 522 ds18b20 com PIC16 ds 18b20 hd44780 0=30 1,0 P2-61 10 3 1-25 nnb101 aDSL 2-67 «» ( ) 2-35 06 2010 (34787 ) Copyright 2010 Created 0,05073 s. |
Подключение IRF3205
Подключение данного транзистора ничем не отличается от способа подключения остальных n-канальных МОП-транзисторов в корпусе ТО-220. Ниже Вы можете увидеть цоколевку выводов MOSFET’а:
Управление осуществляется затвором (gate). В теории, полевику все равно где у него сток, а где исток. Однако в жизни проблема заключается в том, что ради улучшения характеристик транзистора контакты стока и стока производители делают разными. А на мощных моделях из-за технического процесса образуется паразитный обратный диод.
Подключение к микроконтроллеру
Так как для открытия транзистора на затвор необходимо подать около 20В, то подключить его напрямую к МК, который выйдет максимум 5, не получится. Есть несколько способов решения этой задачи:
- Регулировать напряжение на затворе менее мощным транзистором, благодаря которому можно управлять напряжением в 5В. В таком случае схема будет простая и все, что придется добавить — это два резистора (подтягивающий на 10 кОм и ограничивающий ток на 100 Ом)
- Использовать специализированный драйвер. Такая микросхема будет формировать необходимый сигнал управления и выравнивать уровень между контроллером и транзистором. Ниже приведена одна из возможных схем для такого способа.
- Воспользоваться другим транзистором, у которого вольтаж открытия будет ниже. Вот список наиболее мощных и распространенных транзисторов, которые можно использовать с микроконтроллерами такими, как arduino, например:
- IRF3704ZPBF
- IRLB8743PBF
- IRL2203NPBF
- IRLB8748PBF
- IRL8113PBF
Биполярный транзистор
Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.
Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.
В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.
Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.
Основные особенности транзистора Дарлингтона
Основное достоинство составного транзистора это большой коэффициент усиления по току.
Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h21). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.
Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости. Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости: p-n-p и n-p-n. Вот пример составного транзистора по схеме Шиклаи, который работает как транзистор с n-p-n проводимостью, хотя и состоит из двух различной структуры.
схема Шиклаи
К недостаткам составных транзисторов следует отнести невысокое быстродействие, поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.
Хорошо зарекомендовал себя для работы в электронных схемах зажигания мощный n-p-n транзистор Дарлингтона BU931.
Основные электрические параметры:
-
Напряжение коллектор – эмиттер 500 V;
-
Напряжение эмиттер – база 5 V;
-
Ток коллектора – 15 А;
-
Ток коллектора максимальный – 30 А;
-
Мощность рассеивания при 250С – 135 W;
-
Температура кристалла (перехода) – 1750С.
На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.
Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру n-p-n, а TIP125, TIP126, TIP127 — p-n-p.
Также на принципиальных схемах можно встретить и вот такое обозначение.
Безопасная эксплуатация IRF3205
У всех МОСФЕТ транзисторов одинаковые причины для поломки.
Первое, о чем стоит помнить, так это о характеристиках конкретного экземпляра. Не вздумайте использовать его на недопустимых пределах. А при использовании на больших мощностях всегда нужно иметь под рукой дополнительное охлаждения в виде радиатора и, при необходимости, кулера.
Вторая по распространенности проблема — короткое замыкание между стоком и истоком. При такой ситуации кристалл внутри транзистора может легко расплавиться, что приведет устройство в негодность.
Последнее, о чем стоит помнить, это напряжение на затворе. В случае с этим МОП-транзистором, слой диэлектрика способен разрушиться при превышении 25 Вольт на затворе.
Чтобы выбрать подходящий для любого проекта транзистор, нужно опираться на его запас по мощности. Желательно, чтобы этот запас составлял около 30%: этого должно хватить и на нестабильность питания, и на возможную неисправность других компонентов.