Распиновка 78L05
Прежде всего, нужно знать вариант цоколевки по типу smd с 8 ножками. Но стандартная версия данной микросхемы с корпусом ТО-92 имеет лишь 3 вывода (вход, земля, выход). Число выводов — вполне нормальное, если учесть, что часть из них ни к чему не подключается или соединяется между собой электрическими проводами внутри упаковки из пластика.
Для лучшего понимания цоколевки взгляните на рисунок. Из него видно, что не у всех изготовителей она одинаковая.
Стабилизаторы от WS имеют зеркальную цоколевку, что не соответствует вариантам от других компаний. А вот китайские изготовители, наоборот, придерживаются стандартов WS. Всегда имейте в виду этот момент, поскольку из-за него система нередко выходит из строя.
Схема однотактного УНЧ на транзисторе
Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.
С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.
биполярные транзисторы.
На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.
Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21
Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения
Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.
Блок питания с напряжением 5 В без трансформатора
Главный отличительный признак этой схемы — высокая стабильность. Его элементы не нагреваются, и все они доступны простым пользователям.
В блок входит светодиодный определитель включения и выключения. Здесь нет привычного трансформатора, использована гасящая цепочка с определёнными значениями емкости и сопротивления. Блок оборудован выпрямительным мостом на диодах и емкостями для сокращения вибраций, имеет стабилитрон в 9 В. И конечно же, схема не сможет работать без специального устройства стабилизации напряжения — 78L05.
Оно необходимо, так как выходное напряжение моста составляет приблизительно 100 В. Из-за этого возможна поломка стабилизатора. Уровень стабилизации находится в спектре от 8 до 15 В.
В конструкции отсутствует развязка с электрической сетью из гальванических элементов, поэтому использовать блок питания нужно осторожнее.
Таблица 2 – Зарубежные аналоги транзисторов КТ361, КТ361-1, КТ361-2 и КТ361-3
Отечественный транзистор |
Зарубежный аналог |
Возможность купить |
Предприятие производитель |
Страна производитель |
---|---|---|---|---|
Характеристики УМЗЧ
Основные технические характеристики | Значения |
---|---|
Номинальная выходная мощность, Вт, при R = 8 Ом при R = 4 Ом |
50 100 |
Нелинейные искажения, %, при номинальной выход-ной мощности в полосе частот 20 Гц…20кГц, не более | 0,5 |
Коэффициент передачи по напряжению при R = 8 Ом при Rн = 4 Ом |
0,87 0,78 |
Выходное сопротивление (частотно-независимое), Ом, не более | 1,2 |
Входное сопротивление, МОм | 1 |
Входная емкость, пФ, не более | 30 |
Полоса воспроизводимых частот, Гц, по уровню -3 дБ | 0,15…6–¹º |
Назначение отдельных элементов схемы (см. рис. 1) следующее. Резисторы R3, R4, R9, R10, R14, R15, R20, R21 и конденсаторы С8, С9, С11, С12, С17, С18 обеспечивают устойчивость ВК; резисторы R5, R8, R29 обеспечивают устойчивость САР; элементы R24, С21 — цепь Цобеля. Резисторы R18, R19, R22, R23 задают ток покоя; элементы R16, VD2, VD3 защищают вход ОУ DA1 от проникания большого постоянного напряжения с выхода УМЗЧ при аварийном режиме. Резисторы R6, R7, R9, R10, R12 обеспечивают ток покоя 10±2 мА через транзисторы VT1 – VT4 (с учётом разброса характеристик для VT5—VT8).
Резистор R31 ограничивает интервал регулирования тока 10; элементы R28, VD5 обеспечивают режим работы компаратора на микросхеме DA2. Элементы R17, С10, R1, DA1 стабилизируют нулевое напряжение на выходе. Краткие рекомендации по применяемым элементам, их заменам, монтажу и конструкции изложены ниже. Резисторы R18, R19, R22, R23 должны иметь малую индуктивность, например, MF-200 номиналом 0,62 Ом ±5 % или любые металлоплёночные мощностью не менее 2 Вт. Остальные резисторы — С2-23 или аналогичные с разбросом ±5 %. Оксидные конденсаторы — К50-35 или аналогичные по характеристикам. Конденсаторы СЗ, С10, С21, С22 — плёночные К73-17 или аналогичные по параметрам. Остальные конденсаторы — К10-176 или аналогичные.
Возможна замена активных элементов. Так, микросхема DA1 — любой ОУ с входным сопротивлением Rвx> 1 ГОм; микросхема DA2 – КР198НТ6 – КР198НТ8 (с проверкой цоколёвки). Транзистор VT9 — любой малой мощности структуры p-n-p (Uкэmax> 80 В, lк max> 50 мА, Fт> 5МГц), транзистор VT10 — любой маломощный полевой с изолированным затвором и n-каналом с Uси max> 80 В и током lс max> 10 мА. Транзисторы VT1, VT2 — любые из 2SJ77—2SJ79; VT3, VT4 – любые из 2SK214—2SK216; VT5, VT7 — любые из 2SK1056, 2SK1057; VT6, VT8 – любые из 2SJ160, 2SJ161.
Резисторы R14, R15, R20, R21 надо монтировать как можно ближе к транзисторам VT5—VT8, а конденсаторы С8, С9, С17, С18 монтируют непосредственно на выводах этих транзисторов.
Для повышения надёжности работы в условиях повышенной температуры окружающей среды (выше +30 °С) транзисторы VT1—VT4 следует установить на небольшие теплоотводы, обеспечивающие температуру корпусов транзисторов не выше +70 °С. Выходные транзисторы VT5—VT8 также требуют установки на теплоотводы соответствующих размеров, зависимых от заданной выходной мощности и температуры корпусов транзисторов, не превышающей +70 °С.
Как устроена зарядка для разных видов электроники
Рассмотрим несложную и повсеместно применяемую конструкцию. От полученного устройства заряжаются все возможные батареи из лития, никеля, свинца, используемые в бесперебойных устройствах.
Когда аккумулятор заряжается, особое значение имеет сила тока зарядного устройства. В норме он равен приблизительно 1/10 аккумуляторной ёмкости. Постоянство этой величины, в свою очередь, обеспечивается стабилизатором 78L05.
Существует 4 варианта разброса тока зарядки, от 50 до 200 А. Они зависят от величины сопротивления.
При выходном напряжении стабилизатора, равном 5 В, чтобы получить ток 100 мА, нужно воспользоваться резистором с сопротивлением 100 Ом. И так — с каждым из значений.
Кроме того, в схеме есть индикатор, в основе которого лежат 2 транзистора и световой диод. Последний гасится, когда заканчивается заряд.
Принцип работы
Когда на клеммы подается входное напряжение, некоторое количество тока (IB) начинает течь от базы к эмиттеру и управляет током на коллекторе (IC). Напряжение между базой и эмиттером (VBE) для NPN-структуры должно быть прямым. Т.е. на базу прикладывается положительный потенциал, а на эмиттер отрицательный. Полярность напряжения, приложенного к каждому выводу, показана на рисунке ниже.
Входной сигнал усиливается на базе, а затем передается на эмиттер. Меньшее количество тока в базе используется для управления большим, между коллектором и эмиттером (IC).
Когда транзистор открыт, он способен пропускать IC до 100 мА. Этот этап называется областью насыщения. При этом допустимое напряжение между коллектором и эмиттером (VBE) может составлять около 200 мВ,а VBE достигать 900 мВ. Когда ток базы перестает течь, транзистор полностью отключается, эта ступень называется областью отсечки, а VBE будет составлять около 650 мВ.
A1048 Datasheet PDF — Toshiba Semiconductor
Part Number | A1048 | |
Description | PNP Transistor — 2SA1048 | |
Manufacturers | Toshiba Semiconductor | |
Logo | ||
There is a preview and A1048 download ( pdf file ) link at the bottom of this page. Total 3 Pages |
Preview 1 page
No Preview Available !
TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT process) • Small package • High voltage: VCEO = −50 V (min) • High hFE: hFE = 70~400 • Excellent hFE linearity: hFE (IC = −0.1 mA)/hFE (IC = −2 mA) = 0.95 (typ.) • Low noise: NF = 1dB (typ.), 10dB (max) • Complementary to 2SC2458 Absolute Maximum Ratings (Ta = 25°C) Characteristics VCBO −50 V Collector-emitter voltage VCEO −50 V Emitter-base voltage VEBO −5 V Collector current IC −150 mA IB −50 mA JEDEC PC 200 mW Tj 125 °C Tstg −55~125 °C Electrical Characteristics (Ta = 25°C) Characteristics ICBO VCB = −50 V, IE = IEBO VEB = −5 V, IC = hFE (Note) VCE = −6 V, IC = −2 mA VCE (sat) fT Cob NF IC = −100 mA, IB = −10 mA VCE = −10 V, IC = −1 mA VCB = −10 V, IE = 0, f = 1 MHz VCE = −6 V, IC = −0.1 mA, f = 1 kHz, RG = 10 kΩ Note: hFE classification O: 70~140, Y: 120~240, GR: 200~400 Min Typ. Max Unit ⎯ ⎯ −0.1 μA ⎯ ⎯ −0.1 μA 70 ⎯ 400 ⎯ −0.1 −0.3 V 80 ⎯ ⎯ MHz ⎯4 7 pF ⎯ 1.0 10 dB 1 2007-11-01 |
On this page, you can learn information such as the schematic, equivalent, pinout, replacement, circuit, and manual for A1048 electronic component. |
Information | Total 3 Pages |
Link URL | |
Product Image and Detail view | 1. 2SA1048, PNP Transistor — Toshiba |
Download |
Share Link :
Electronic Components Distributor
An electronic components distributor is a company that sources, stocks, and sells electronic components to manufacturers, engineers, and hobbyists. |
SparkFun Electronics | Allied Electronics | DigiKey Electronics | Arrow Electronics |
Mouser Electronics | Adafruit | Newark | Chip One Stop |
Особенности BC547:
Узнав о некоторых общих чертах с членами семьи, давайте сосредоточимся на некоторых величинах и особенности BC547.
Прирост:
La текущий прирост, когда мы говорим об общей базе, это примерно коэффициент усиления по току от эмиттера до коллектора в прямой активной области, всегда меньше 1. В случае BC548, как и его братьев по семейству, они имеют очень хороший коэффициент усиления. между 110 и 800 hFE для постоянного тока. Обычно это указывается с дополнительной буквой в конце номенклатуры, которая указывает диапазон усиления с учетом допуска устройства. Если такой буквы нет, то это может быть любая буква в указанном мною диапазоне. Например:
- BC547: между 110-800hFE.
- БК547А: между 110-220hFE.
- BC547B: между 200-450hFE.
- BC547C: между 450-800hFE.
То есть производитель рассчитывает, что она будет между этими диапазонами, но неизвестно, какова именно реальная прибыль, поэтому мы должны поставить себя в худший случай когда мы проектируем схему. Таким образом, гарантируется, что схема работает, даже если коэффициент усиления является минимумом диапазона, а также гарантируется, что схема будет продолжать работать, если мы заменим упомянутый транзистор. Представьте, что вы разработали схему так, чтобы она работала с минимум 200hFE, и у вас есть BC547B, но вы решили заменить его на BC547A или BC547, он может не достичь этой скорости и не будет работать … С другой стороны стороны, если вы сделаете так, чтобы он работал со 110, то либо у вас сработает.
Частотный отклик:
La частотный отклик это очень важно для усилителей. Амплитудно-частотная характеристика транзистора будет зависеть от того, сможет ли он работать с той или иной частотой. Это что-то напомнит вам, если вы изучали такие темы, как частотные фильтры высоких и низких частот, верно? В случае с семейством, представленным здесь, и, следовательно, с BC547, они имеют хорошую частотную характеристику и могут работать на частотах между 150 и 300 МГц
Это что-то напомнит вам, если вы изучали такие темы, как частотные фильтры высоких и низких частот, верно? В случае с семейством, представленным здесь, и, следовательно, с BC547, они имеют хорошую частотную характеристику и могут работать на частотах между 150 и 300 МГц.
Обычно в радиокомпоненты Полная информация о транзисторе предоставлена производителями, включая график частотной характеристики. Эти документы можно загрузить в формате PDF с официальных сайтов производителей устройств, и там вы найдете значения. Вы увидите частотную характеристику с инициалами fT.
Эти максимальные частоты гарантируют, что транзистор усилить хотя бы 1, поскольку чем выше частота, тем меньше усиление транзистора за счет емкостной его части. Выше этих приемлемых частот транзистор может иметь очень небольшое усиление или не иметь его вообще, поэтому он не выполняет компенсацию.
Эквивалентности и дополнения:
Вы можете оказаться перед дилеммой: используйте другой тип транзистора или дополняет BC547 в цепи. Вот почему мы собираемся показать некоторые эквиваленты или антагонисты.
-
Эквиваленты:
- Аналогичный: эквивалентный транзистор для монтажа на монтажной плате будет 2N2222 или PN2222, которому мы посвятим отдельную статью. Но будьте осторожны! В случае мифического 2N2222 контакты эмиттера и коллектора поменяны местами. То есть это будет эмиттер-база-коллектор, а не коллектор-база-эмиттер. Следовательно, вы должны сварить его или повернуть на 180 ° относительно того, как у вас был BC547.
- SMDЕсли вам нужен аналог BC547 для поверхностного монтажа для печатных схем или печатных плат меньшего размера, то вам нужен BC487, инкапсулированный под SOT23. Это позволило бы избежать пластины с отверстиями для монтажа и пайки. Кстати, если вы ищете эквивалентные биполярные транзисторы для других членов семейства, вы можете проверить BC846, BC848, BC849 и BC850. То есть замените BC4xx на эквивалентный BC8xx.
- Дополнительный: Другая ситуация, которая может возникнуть, заключается в том, что вам нужно обратное, то есть PNP вместо NPN. В этом случае правильным будет BC557. Чтобы найти дополнительные предметы для остальных членов семьи, вы можете использовать BC5xx, например: BC556, BC558, BC559 и BC560.
Надеюсь, этот пост помог вам и следующий будет PN2222.
«Альтернативные» конструкции
- Очень низкое значение уровня нелинейных искажений в выходном сигнале.
- Высших гармоник меньше, чем в транзисторных конструкциях.
Но есть один огромный минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.
Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.
Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество
Поэтому нужно обращать внимание в первую очередь на них, а не на мощность
In Stock
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
Quantity
Quick RFQ
Устройство лабораторного источника электричества на основе 78L05
Рассматриваемая конструкция оригинальна, так как в ней применяется нетипичная микросхема TDA2030, а вот источником электроэнергии здесь является стабилизатор 78L05. Так как максимум рабочего входного напряжения этого устройства равно 20 В, то, чтобы оно не сломалось, работа продолжается не без участия параметрического стабилизатора.
Для подключения устройства TDA2030 применяем неинвертирующий прибор. В итоге создаётся конкретный показатель усиления. В итоге, напряжение на выходе источника электроэнергии при переменах показателя резистора корректируется от 0 до 30 В. При необходимости смены наибольшего выходного вольтажа, для этого подбирают резистор соответствующего уровня.