In Stock: 4853
United States
China
Canada
Japan
Russia
Germany
United Kingdom
Singapore
Italy
Hong Kong(China)
Taiwan(China)
France
Korea
Mexico
Netherlands
Malaysia
Austria
Spain
Switzerland
Poland
Thailand
Vietnam
India
United Arab Emirates
Afghanistan
Åland Islands
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua & Barbuda
Argentina
Armenia
Aruba
Australia
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire, Sint Eustatius and Saba
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
British Virgin Islands
Brunei
Bulgaria
Burkina Faso
Burundi
Cabo Verde
Cambodia
Cameroon
Cayman Islands
Central African Republic
Chad
Chile
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros
Congo
Congo (DRC)
Cook Islands
Costa Rica
Côte d’Ivoire
Croatia
Cuba
Curaçao
Cyprus
Czechia
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
French Guiana
French Polynesia
Gabon
Gambia
Georgia
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hungary
Iceland
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Jamaica
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao(China)
Madagascar
Malawi
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mayotte
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestinian Authority
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Portugal
Puerto Rico
Qatar
Réunion
Romania
Rwanda
Samoa
San Marino
São Tomé & Príncipe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Sint Maarten
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Sudan
Sri Lanka
St Helena, Ascension, Tristan da Cunha
St. Barthélemy
St. Kitts & Nevis
St. Lucia
St. Martin
St. Pierre & Miquelon
St. Vincent & Grenadines
Sudan
Suriname
Svalbard & Jan Mayen
Sweden
Syria
Tajikistan
Tanzania
Timor-Leste
Togo
Tokelau
Tonga
Trinidad & Tobago
Tunisia
Turkey
Turkmenistan
Turks & Caicos Islands
Tuvalu
U.S. Outlying Islands
U.S. Virgin Islands
Uganda
Ukraine
Uruguay
Uzbekistan
Vanuatu
Vatican City
Venezuela
Wallis & Futuna
Yemen
Zambia
Zimbabwe
Quantity
Quick RFQ
Подключение IRF3205
Подключение данного транзистора ничем не отличается от способа подключения остальных n-канальных МОП-транзисторов в корпусе ТО-220. Ниже Вы можете увидеть цоколевку выводов MOSFET’а:
Управление осуществляется затвором (gate). В теории, полевику все равно где у него сток, а где исток. Однако в жизни проблема заключается в том, что ради улучшения характеристик транзистора контакты стока и стока производители делают разными. А на мощных моделях из-за технического процесса образуется паразитный обратный диод.
Подключение к микроконтроллеру
Так как для открытия транзистора на затвор необходимо подать около 20В, то подключить его напрямую к МК, который выйдет максимум 5, не получится. Есть несколько способов решения этой задачи:
- Регулировать напряжение на затворе менее мощным транзистором, благодаря которому можно управлять напряжением в 5В. В таком случае схема будет простая и все, что придется добавить — это два резистора (подтягивающий на 10 кОм и ограничивающий ток на 100 Ом)
- Использовать специализированный драйвер. Такая микросхема будет формировать необходимый сигнал управления и выравнивать уровень между контроллером и транзистором. Ниже приведена одна из возможных схем для такого способа.
- Воспользоваться другим транзистором, у которого вольтаж открытия будет ниже. Вот список наиболее мощных и распространенных транзисторов, которые можно использовать с микроконтроллерами такими, как arduino, например:
- IRF3704ZPBF
- IRLB8743PBF
- IRL2203NPBF
- IRLB8748PBF
- IRL8113PBF
Безопасная эксплуатация IRF3205
У всех МОСФЕТ транзисторов одинаковые причины для поломки.
Первое, о чем стоит помнить, так это о характеристиках конкретного экземпляра. Не вздумайте использовать его на недопустимых пределах. А при использовании на больших мощностях всегда нужно иметь под рукой дополнительное охлаждения в виде радиатора и, при необходимости, кулера.
Вторая по распространенности проблема — короткое замыкание между стоком и истоком. При такой ситуации кристалл внутри транзистора может легко расплавиться, что приведет устройство в негодность.
Последнее, о чем стоит помнить, это напряжение на затворе. В случае с этим МОП-транзистором, слой диэлектрика способен разрушиться при превышении 25 Вольт на затворе.
Чтобы выбрать подходящий для любого проекта транзистор, нужно опираться на его запас по мощности. Желательно, чтобы этот запас составлял около 30%: этого должно хватить и на нестабильность питания, и на возможную неисправность других компонентов.
Историческая справка
История этого популярного полупроводникового прибора хорошо известна. Первоначально он был разработан в 60-хх компанией RCA (инженерами из группы Херба Мейзеля) и производился по меза-планарному техпроцессу. Предназначался для работы в усилителях мощности. В последующем стал применяться в стабилизаторах и регуляторах напряжения в блоках питания. С середины 70-xx, вместе с поиском более экономичного способа производства, его начали изготавливать по эпитаксиальной технологии. Неплохие усиливающие свойства, их линейность при этом, cделали устройство незаменимым спутником многих УНЧ того времени.
К сожалению RCA в 1988 г. прекратило существование. Её полупроводниковый бизнес приобрела американская Harris Corporation. Сейчас транзисторы с маркировкой 2N 3055 выпускают многие зарубежные компании, в том числе с применением экологичных без свинцовых (Pb-Free) стандартов. Считается, что более новые экземпляры (выпущенные по эпитаксиальной технологии) лучше работают в схемах усиления, но хуже защищены от высоких напряжений.
Вместе тем, в последнее время качество изготовления таких транзисторов сильно упало, особенно с появлением китайских конкурентов. Кроме того, появились случаи их подделки. Маловероятно купить оригинальный экземпляр на интернет-площадках вроде Aliexpress, Amazon, eBay, и др. Поэтому многие радиолюбители предпочитают его старые версии, выпущенные преимущественно до 2000 г.
Разделы справочника:
Добавить описание биполярного транзистора.Добавить описание полевого транзистора.Добавить описание биполярного транзистора с изолированным затвором.Поиск биполярного транзистора по основным параметрам.Поиск полевого транзистора по основным параметрам.Поиск БТИЗ (IGBT) по основным параметрам.Поиск транзистора по маркировке.Поиск корпуса электронного компонента. Узнать размеры транзистора.Добавить чертёж транзистора.Параметры транзисторов биполярных низкочастотных npn.Параметры транзисторов биполярных низкочастотных pnp.Параметры транзисторов биполярных высокочастотных npn.Параметры транзисторов биполярных высокочастотных pnp.Параметры транзисторов биполярных сверхвысокочастотных npn.Параметры транзисторов биполярных сверхвысокочастотных pnp.Параметры полевых транзисторов n-канальных.Параметры полевых транзисторов p-канальных.Параметры биполярных транзисторов с изолированным затвором (БТИЗ, IGBT).
Cправочник характеристик транзисторов ПАРАТРАН полезен опытным и начинающим радиолюбителям, профессионалам в сфере электроники, конструкторам, ученикам школ и студентам высших учебных заведений, где преподаются дисциплины по электронным приборам. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов, выпускаемых промышленностью. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте».
Если Вы заметили ошибку, огромная просьба написать письмо.
Спасибо за терпение и сотрудничество.
Биполярные транзисторы
Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
- Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять
- База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его
- Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»
Основной характеристикой биполярного транзистора является показатель hfe
также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер
способен пропустить транзистор по отношению к току база–эмиттер.
Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит
через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент,
который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас».
Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные
10 мА.
Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на
контактах. Превышение этих величин ведёт к избыточному нагреву
и сокращению службы, а сильное превышение может привести к разрушению.
NPN и PNP
Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит
из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав
кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive —
с избытком положительных (p-doped).
NPN более эффективны и распространены в промышленности.
PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N.
PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется,
когда через неё идёт ток.
3.2. Физические процессы в биполярном транзисторе типа p-n-p
Рассмотрим движение носителей заряда через структуру транзистора, которые
протекают в выводах эмиттера, базы и коллектора, при условии, что на
ЭП подано прямое напряжение, а на КП — обратное (т.е. транзистор работает
в активном режиме).
Значение токов, протекающих через структуру транзистора, определяется
не только напряжениями, которые подаются на эмиттерный и коллекторный
переходы, но и взаимодействием этих переходов между собой. Взаимодействие
переходов, в свою очередь, зависит от расстояния между ними, т.е. от
ширины области базы — W.
На рисунке 3.3 показаны движение носителей заряда в структуре p-n-p
транзистора и токи, протекающие во внешних выводах.
Если ширина базы W меньше диффузионной длины пробега неосновных носителей
заряда в базе (рис.3.3
), то значение тока, протекающего через КП, определяется следующими
причинами:
1) т.к. в этом случае ширина базы гораздо меньше ширины области коллектора,
то и количество неосновных носителей заряда, возникающих при данной
температуре в области базы ( ),
будет гораздо меньше количества неосновных носителей заряда, возникающих
в области коллектора ( ),
и можно считать, что
, где Jko
ток неосновных носителей заряда koп
2) дырки, которые диффузионно переходят из эмиттера в базу над снизившимся
потенциальным барьером эмиттерного перехода, в базе продолжают двигаться
диффузионно в основном в сторону коллекторного перехода. А т.к. ширина
базы меньше их диффузионной длины пробега, то они достигнут коллекторного
перехода в количестве тем больше, чем меньше ширина базы. Однако, вследствие
дисперсии, т.е. беспорядочного теплового движения носителей, какая-то
часть дырок не доходит до КП из-за процесса рекомбинации на поверхности,
у базового вывода или в толще базы, в следствии этого в цепи базы появляется
базовый ток .
Величина, характеризующая долю тока эмиттера, достигающую коллекторного
перехода. называется коэффициентом передачи постоянного тока эмиттера
и обозначается .
Тогда ток коллектора:
Таким образом, ток через КП для случая
(для p-n-p транзистора) является суммой двух составляющих — тока дырок,
инжектированных из эмиттера в базу, и нулевого коллекторного тока .
В толщине базы протекает
и рекомбинационный ток, но в силу того, что процесс рекомбинации в базе
резко уменьшается, рекомбинационная составляющая тока базы тоже мала
.
Соответственно во внешних выводах эмиттера, базы и коллектора будут
протекать токи:
вывод эмиттера ,
вывод коллектора ,
вывод базы
где — является
рекомбинационной составляющей тока базы, величина которой зависит от
величины прямого напряжения, приложенного к ЭП. — ток неосновных
носителей заряда, величина которого от приложенного напряжения почти
не зависит.
Если p-n-p транзистор, работающий как усилитель электрических колебаний,
включен в схему так, как это показано на рис.3.4, то включение последовательно
с источником
переменного напряжения
приведет к появлению переменных составляющих тока эмиттера ,
тока коллектора и
тока базы ,
которые будут накладываться на постоянные составляющие. Так же как и
постоянные токи, протекающие через p-n-p транзистор, переменные токи
являются функциями напряжения. Если на вход подается синусоидальное
напряжение, то оно вызовет синусоидальные изменения плотности дырок
в эмиттерном и коллекторном переходах, т.е. синусоидальные изменения
переменных токов эмиттера, коллектора и базы.
Переменный ток, протекающий через ЭП, равен сумме электронного и дырочного
токов, причем для p-n-p транзистора только дырочная составляющая проходит
последовательно ЭП, обладающий малым сопротивлением и КП, обладающий
большим сопротивлением, т.е. создает условия для усиления электрических
колебаний.
Поэтому на практике для характеристики усилительных свойств транзистора
пользуются коэффициентом передачи тока эмиттера или, как его иначе называют,
коэффициентом усиления по току a, который
является отношением общего коллекторного переменного тока к общему эмиттерному
переменному току в режиме короткого замыкания коллектора на базу по
переменному току.
Применение IRF3205
Максимальное напряжение стока-истока в 55 В дает возможность использовать этот транзистор в схемах преобразователей напряжения, импульсных источников питания, блоков питания, источниках бесперебойного питания и прочем. Также зачастую при создании высокочастотных инверторов.
Так как IRF3205 имеет малую паразитную емкость, а, соответственно, и время открытия/закрытия, в совокупности с очень маленьким сопротивлением, то он является универсальным вариантом для многих проектов, связанных с коммутацией небольшого напряжения.
Если же Вам не хватает токовых характеристик этого транзистора, Вы можете подключить несколько штук параллельно, что дает хорошую возможность использовать его для управления большой нагрузкой.
Устройство IRF3205
Устройство и работа данного транзистора не имеет никаких отличий от устройств и работ других n-канальных МОП-транзисторов.
12 недорогих наборов электроники для самостоятельной сборки и пайки
Моя личная подборка конструкторов с Aliexpress «сделай сам» для пайки от простых за 153 до 2500 рублей. Дочке 5 лет — надо приучать к паяльнику))) — пусть пока хотя-бы смотрит — переходи посмотреть, один светодиодный куб чего только стоит
При подаче положительного напряжения между контактом затвора и истока между подложкой и контактом затвора образуется поперечное электрическое поле. Это поле притягивает отрицательно заряженные электроны к поверхностному слою диэлектрика. В результате такого заряда, в этом слое образуется некая область проводимости — так называемый “канал”.
Стоит заметить, что заряд накапливается, в своего рода, электрическом конденсаторе, состоящем из электрода затвора и подложки с диэлектриком. В этом конденсаторе обкладки — металлический вывод затвора и область подложки, а изоляторы — диэлектрики, состоящие из оксида кремния. Именно исходя из характеристик этого конденсатора и складывается параметр емкости затвора транзистора.
Маркировка IRF3205
В маркировке данного транзистора первые две буквы (IR) означают первого производителя — International Rectifier. Сейчас этот транзистор выпускается многими компаниями, но именно с этой началась история этого компонента.
Помимо оригинальной версии, на данный момент существует еще и бессвинцовая версия, которая помечается постфиксом “Z” — (IRF3205Z), но раньше обозначение выглядело по-другому, а именно — “PbF”, что расшифровывается как Plumbum Free.
А также существуют версии в других корпусах: IRF3205ZL — TO262 (припаивание стока-радиатора к плате для охлаждения) и IRF3205ZS — D2Pak (для поверхностного монтажа).
TO262 и D2Pak, который иначе называется TO263, отличаются тем, что первый предназначен для монтажа в отверстия на плате, после чего загибается и припаивается радиатором к ней же. TO263, в свою очередь, не требует отверстий и обладает короткими выводами, что позволяет использовать его при поверхностном монтаже на небольших платах.
Другие переключающие транзисторы
Распиновка вариантов 2Н2222 в пластиковом корпусе ТО-92 .
Кремниевые NPN-транзисторы с аналогичными свойствами также производятся в различных небольших корпусах для сквозного монтажа и поверхностного монтажа, включая TO-92 , SOT-23 и SOT-223.
Замены для 2N2222 обычно доступны в более дешевой упаковке TO-92 , где он известен как PN2222 или P2N2222, который имеет аналогичные характеристики, за исключением более низкого максимального тока коллектора. P2N2222 имеет другой порядок выводов, чем металлический корпус 2N2222, с коммутационными соединениями эмиттера и коллектора; другие транзисторы в пластиковом корпусе также имеют разное расположение выводов.
Одиночные транзисторы также доступны в нескольких различных корпусах для поверхностного монтажа, и ряд производителей продают корпуса для поверхностного монтажа, которые включают несколько транзисторов типа 2N2222 в одном корпусе в виде массива транзисторов. Общие характеристики различных вариантов схожи, самая большая разница заключается в максимально допустимом токе и рассеиваемой мощности.
Семейство BC548 , в том числе от BC547A до BC550C, представляет собой транзисторы общего назначения с низким напряжением и током в корпусах TO-92 европейского производства, которые часто используются в схемах усиления и переключения слабых сигналов того типа, в котором 2N2222 может иначе можно использовать. Это не настоящая замена, а сопоставимые устройства, которые могут быть заменены только в цепях, в которых не превышаются максимальные значения тока и напряжения.
2N2907 является одинаково популярны ПНП транзистор комплементарной к 2N2222.
2N3904 является транзистором NPN , который может переключаться только одну трети тока 2N2222 , но имеет иной сходные характеристики. 2N3904 демонстрирует свой пик прямого усиления (бета) при более низком токе, чем 2N2222, и может использоваться в усилителях с пониженным I c , например (пик усиления при 10 мА для 2N3904 и 150 мА для 2N2222).
Версия 2N2222A в более крупном металлическом корпусе TO-39 , 2N2219A имела более высокую мощность рассеивания (3 Вт при подключении к радиатору, поддерживающему температуру корпуса на уровне 25 ° C, или 0,8 Вт на открытом воздухе, по сравнению с 1,8 Вт). Ватт и 0,5 Вт (соответственно) для 2N2222A.
Основные параметры транзистора 2N2907A биполярного высокочастотного pnp.
Эта страница показывает существующую справочную информацию о параметрах биполярного высокочастотного pnp транзистора 2N2907A . Дана подробная информация о параметрах, схеме и цоколевке, характеристиках, местах продажи и производителях. Аналоги этого транзистора можно посмотреть на отдельной странице.
Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремний (Si)Структура полупроводникового перехода: pnp
Pc max | Ucb max | Uce max | Ueb max | Ic max | Tj max, °C | Ft max | Cc tip | Hfe |
400mW | 60V | 60V | 5V | 600mA | 200°C | 200MHz | 8 | 100MIN |
Производитель: FAIRCHILDСфера применения: Medium Power, General PurposeУсловные обозначения описаны на странице «Теория».
Производители
По статистике, в мире насчитывается более миллиарда очень похожих по характеристикам транзисторов с цифрами «2222» в обозначении, особенно в корпусе ТО-92. Они встречаются в различных вариантах исполнения и модификаций. Постоянно появляются более новые образцы, которые совершенствуются и модернизируются производителями. При этом, спрос на такие устройства до сих пор остаётся стабильно высоким.
Многие современные транзисторы, у которых в маркировке присутствуют цифры «2222», являются более совершенствованными 2N2222. В настоящее время их выпуск налажен у следующих производителей полупроводниковых компонентов: NXP Semiconductors, Multicomp, Continental Device India Limited, Semtech Electronics, Inchange Semiconductor Company Limited, Micro Commercial Components (MCC), New Jersey Semi-Conductor Products, Siemens Semiconductor, ON Semiconductor, Foshan Blue Rocket Electronics, STMicroelectronics. Выгрузить datasheet в формате pdf возможно кликнув на это сообщение.