BC547BP Datasheet (PDF)
8.1. bc547b bc547c.pdf Size:60K _st
BC547BBC547CSMALL SIGNAL NPN TRANSISTORSOrdering Code Marking Package / ShipmentBC547B BC547B TO-92 / BulkBC547B-AP BC547B TO-92 / AmmopackBC547C BC547C TO-92 / BulkBC547C-AP BC547C TO-92 / Ammopack SILICON EPITAXIAL PLANAR NPNTRANSISTORS TO-92 PACKAGE SUITABLE FORTHROUGH-HOLE PCB ASSEMBLYTO-92 TO-92 BC547B — THE PNP COMPLEMENTARYBulk AmmopackTYPE IS BC557BAP
8.2. bc547 bc547a bc547b bc547c.pdf Size:26K _fairchild_semi
Discrete POWER & SignalTechnologiesBC547BC547ABC547BBC547CE TO-92BCNPN General Purpose AmplifierThis device is designed for use as general purpose amplifiersand switches requiring collector currents to 300 mA. Sourced fromProcess 10. See PN100A for characteristics.Absolute Maximum Ratings* TA = 25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collector-
8.3. bc547ba3.pdf Size:412K _cystek
Spec. No. : C204A3 Issued Date : 2015.01.23 CYStech Electronics Corp.Revised Date : Page No. : 1 / 7 General Purpose NPN Epitaxial Planar Transistor BC547BA3Description The BC547BA3 is designed for use in driver stage of AF amplifier and low speed switching. Complementary to BC557BA3. Pb-free package Symbol Outline BC547BA3 TO-92 BBase CCollector
8.4. bc546abk bc547abk bc548abk bc549abk bc546bbk bc547bbk bc548bbk bc549bbk bc546cbk bc547cbk bc548cbk bc549cbk.pdf Size:81K _diotec
BC546xBK … BC549xBKBC546xBK … BC549xBKGeneral Purpose Si-Epitaxial Planar TransistorsNPN NPNSi-Epitaxial Planar-Transistoren fr universellen EinsatzVersion 2009-12-030.1Power dissipation Verlustleistung 500 mW4.6Plastic case TO-92Kunststoffgehuse (10D3)Weight approx. Gewicht ca. 0.18 gC B EPlastic material has UL classification 94V-0Gehusematerial
Простейший усилитель на биполярном транзисторе
Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы.
Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного
напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для
понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов
в приведенном ниже примере носит несколько упрощенный характер.
1.Описание основных элементов цепи
Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200).
Со стороны коллектора подключим относительно мощный источник питания в 20V,
за счет энергии которого будет происходить усиление. Со стороны базы транзистора
подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного
напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить.
Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала,
обычно обладающего слабой мощностью.
2. Расчет входного тока базы Ib
Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением,
нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin).
Назовем эти значения тока соответственно — Ibmax и Ibmin.
Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается
один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение,
при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности
вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель,
согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между
базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0),
то напряжение от базы до земли тоже 0.6V (VB = 0.6V).
Посчитаем Ibmax и Ibmin с помощью закона Ома:
2. Расчет выходного тока коллектора IС
Теперь, зная коэффициент усиления (β = 200),
можно с легкостью посчитать максимальное и
минимальное значения тока коллектора ( Icmax и Icmin).
3. Расчет выходного напряжения Vout
Осталось посчитать напряжение на выходе нашего усилителя Vout.
В данной цепи — это напряжение на коллекторе VC.
Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:
4. Анализ результатов
Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того,
что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве
случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда,
которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же,
соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя,
однако для иллюстрации процесса усиления вполне подойдет.
Итак, подытожим принцип работы усилителя на биполярном транзисторе.
Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие.
Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся».
Переменная составляющая – это, собственно, сам сигнал (полезная информация).
Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β.
В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.
Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний,
но с сохранившейся формой и частотой
Важно подчеркнуть, что энергию для усиления транзистор
берет у источника питания VCC. Если напряжения питания будет недостаточно,
транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.
Таблица предельных значений
Работа транзистора с превышением значений, указанных в таблице, может его повредить или нарушить функционирование: пропадут или изменятся усилительные и переключающие характеристики полупроводникового прибора. Не рекомендуется допускать режимы с такими нагрузками. Кроме того, длительная работа с превышением предельных значений может повлиять на надежность радиокомпонента в будущем.
Значения напряжения и тока в таблице соответствуют температуре окружающей среды +25°C.
Обозначение | Параметр | Величина | Ед.изм. |
---|---|---|---|
Uкб max | Напряжение коллектор-база | 20…50 | В |
Uкэ max | Напряжение коллектоp-эмиттеp (Rбэ=10кОм) | 20…50 | В |
Uэб max | Напряжение эмиттер-база | 5 | В |
Iк max | Постоянный ток коллектора | 200 | мА |
Iк имп max | Импульсный ток коллектора (tu 500) | 250 | мА |
Pк max | Рассеиваемая мощность коллектора | 250 | мВт |
Tj | Температура перехода | 125 | °C |
Как собрать корпус SOT23 собственноручно
Приготовьте 3 куска монтажного провода подходящей длины, желательно, МГТФ. Из них получатся выводы корпуса.
Для защиты сделайте небольшую зачистку на пару миллиметров со стороны, которая припаивается к корпусу.
Замкните концы кусочков провода на участке, который впаивают в плату и зафиксируйте, чтобы уравнять потенциалы.
С помощью тонкого пинцета сделайте из пластика корпус, и зажмите его так:
Наденьте на паяльник так называемое игольчатое жало, оно, как правило, есть в паяльных станциях.
Установите на станции минимальную температуру, чтобы паять только припой. Ее можно определить только экспериментально.
Возьмите кусок провода в одну руку, паяльник — в другую. Можно паять стандартным припоем из свинца. Ни в коем случае нельзя перегревать контакты корпуса, а контакты паяльника — распаяйте и подпаяйте провода для выводов. Они должны быть уложены в виду пучка.
Припаивайте провода в определенном порядке, начиная с истока, и заканчивая затвором.
Не прикасайтесь к корпусу руками, трогать можно только паяльник и провода. При необходимости поправьте с помощью пинцета положение корпуса.
Готово! Вы не просто собрали корпус, а теперь он выводной. Его можно использовать, как все остальные транзисторы МОП.
Аналоги
Аналоги для любой серии КТ3102 нужно подбирать в зависимости от конкретного устройства, потому что они имеют разные буквенные индексы и отличаются по параметрам. Поэтому, возможную замену приведём в виде таблицы, в которой слева будет расположено наименование одного из транзисторов, а в правой его прототип.
Транзистор | Аналог |
КТ3102 | BC174, BC182 |
КТ3102А | 2SC945, BC107AP, BC182A, BC237, BC547A, BC548A, BC550A, КТ6111А |
КТ3102АМ | BC547A |
КТ3102Б | BCY79, BC547C, 2N5210, 2SC945G, BC182B, BC107BP, BC546B, BC550B, BC237B, КТ6111Б, BC183B, BC183C, BC337, BC547B, 2SC1815, 2N2483 |
КТ3102БМ | BC547B |
КТ3102В | 2N3711, 2SC458, 2SC828, BC108, BC548, BC549, КТ373В |
КТ3102ВМ | BC548B |
КТ3102Г | 2SC538, BC547C, BC548C, |
КТ3102Д | 2N2484, 2N4124, 2N5209, 2SC945, BC109, BC521, BC549A, BC549B, MPS6515 |
Технические характеристики
Теперь рассмотрим технические характеристики транзисторов серии КТ3102. Начнём с максимально допустимых, как критически важных. Они измерялись при стандартной температуре 25°С:
- разность потенциалов К-Б:
- КТ3102А, КТ3102Б – 50 В;
- КТ3102В, КТ3102Д – 30 В
- разность потенциалов К-Э:
- КТ3102А, КТ3102Б – 50 В;
- КТ3102В, КТ3102Д – 30 В
- разность потенциалов Э-Б – 5 В;
- ток через коллектор – 100 мА;
- кратковременный ток через коллектор (время импульса не более 40 мкс) – 200 мА;
- мощность – 250 мВт;
- т-ра при которой транзистор может нормально функционировать от -40 до +85 °С.
После предельных ознакомимся также с электрическими параметрами. Они важны, так как от них зависят возможности КТ3102. Измерялись при той же стандартной температуре, а остальные условия тестирования приведены в отдельном столбце таблицы.
Электрические характеристики транзистора КТ3102 (при Т = +25 оC) | ||||||
Параметры | Режимы тестирования | Тр-р | min | typ | max | Ед. изм |
Статический к-т усиления в схеме ОЭ | UКБ = 5 В, IЭ = 2 мА,
Т = +25°С |
КТ3102А | 100 | 250 | ||
КТ3102Б, В, Д | 200 | 500 | ||||
UКБ = 5 В, IЭ = 2 мА,
Т = -40°С |
КТ3102А | 25 | 250 | |||
КТ3102Б, В, Д | 50 | 500 | ||||
UКБ = 5 В, IЭ = 2мА,
Т = +85°С |
КТ3102А | 100 | ||||
КТ3102Б, В, Д | 200 | |||||
Граничная частота | UКБ = 5 В, IЭ = 10 мА | ВСЕ | 300 | МГц | ||
К-т шума | UКБ = 5 В, IЭ = 0,2 мА
F = 1кГц, RГ = 2кОм |
КТ3102А, Б, В | 5 | 10 | дБ | |
КТ3102Д | 2,5 | 4 | ||||
Граничная разность потенциалов | IБ = 0 В, IЭ = 10 мА | КТ3102А, Б | 30 | В | ||
КТ3102В, Д | 20 | |||||
Обратный ток К-Э | UКЭ = 50 В | КТ3102А, Б | 0,1 | мкА | ||
UКЭ = 30 В | КТ3102В, Д | 0,05 | ||||
Обратный ток через К | Т = +25°С | КТ3102А, Б | 0,1 | мкА | ||
Т = -40°С | 0,05 | |||||
Т = +85°С | 5 | |||||
Т = +25°С | КТ3102В, Д | 0,05 | ||||
Т = -40°С | 0,015 | |||||
Т = +85°С | 5 | |||||
Обратный ток через Э | UЭБ = 5 В | ВСЕ | 10 | мкА | ||
Ёмкость на коллекторе | UКБ = 5 В | ВСЕ | 6 | пФ |
BC547BA3 Datasheet (PDF)
0.1. bc547ba3.pdf Size:412K _cystek
Spec. No. : C204A3 Issued Date : 2015.01.23 CYStech Electronics Corp.Revised Date : Page No. : 1 / 7 General Purpose NPN Epitaxial Planar Transistor BC547BA3Description The BC547BA3 is designed for use in driver stage of AF amplifier and low speed switching. Complementary to BC557BA3. Pb-free package Symbol Outline BC547BA3 TO-92 BBase CCollector
8.1. bc547b bc547c.pdf Size:60K _st
BC547BBC547CSMALL SIGNAL NPN TRANSISTORSOrdering Code Marking Package / ShipmentBC547B BC547B TO-92 / BulkBC547B-AP BC547B TO-92 / AmmopackBC547C BC547C TO-92 / BulkBC547C-AP BC547C TO-92 / Ammopack SILICON EPITAXIAL PLANAR NPNTRANSISTORS TO-92 PACKAGE SUITABLE FORTHROUGH-HOLE PCB ASSEMBLYTO-92 TO-92 BC547B — THE PNP COMPLEMENTARYBulk AmmopackTYPE IS BC557BAP
8.2. bc547 bc547a bc547b bc547c.pdf Size:26K _fairchild_semi
Discrete POWER & SignalTechnologiesBC547BC547ABC547BBC547CE TO-92BCNPN General Purpose AmplifierThis device is designed for use as general purpose amplifiersand switches requiring collector currents to 300 mA. Sourced fromProcess 10. See PN100A for characteristics.Absolute Maximum Ratings* TA = 25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collector-
8.3. bc546abk bc547abk bc548abk bc549abk bc546bbk bc547bbk bc548bbk bc549bbk bc546cbk bc547cbk bc548cbk bc549cbk.pdf Size:81K _diotec
BC546xBK … BC549xBKBC546xBK … BC549xBKGeneral Purpose Si-Epitaxial Planar TransistorsNPN NPNSi-Epitaxial Planar-Transistoren fr universellen EinsatzVersion 2009-12-030.1Power dissipation Verlustleistung 500 mW4.6Plastic case TO-92Kunststoffgehuse (10D3)Weight approx. Gewicht ca. 0.18 gC B EPlastic material has UL classification 94V-0Gehusematerial