Характеристики транзистора d882 (2sd882)

Параметры транзистора  2sd1804r. интернет-справочник основных параметров транзисторов.

Графические иллюстрации характеристик

Рис. 1. Внешняя характеристика транзистора в схеме с общим эмиттером: зависимость коллекторного тока IC от напряжения коллектор-эмиттер UCE.

Характеристика снята при нескольких значениях тока базы (управления) IB.

Рис. 2. Зависимость статического коэффициента усиления по току hFE от величины коллекторной нагрузки IC.

Характеристика снята при коллекторном напряжении UCE = 2 В.

Рис. 3. Зависимости напряжений насыщения коллектор-эмиттер UCE(sat) и база-эмиттер UBE(sat) транзистора от величины коллекторной нагрузки IC.

Характеристики получены для соотношения токов IC/IB = 10.

Рис. 4. Изменение граничной частоты усиления (частоты среза) fT при изменении нагрузки IC.

При снятии характеристики напряжение коллектор-эмиттер UCE = 5 В.

Рис. 5. Зависимость емкости коллекторного перехода транзистора Cob от приложенного обратного напряжения коллектор-база UCB.

Характеристика снята при частоте процесса f = 1 МГц и при отсутствии тока эмиттера IE = 0.

Рис. 6. Снижение токовой нагрузки транзистора (в процентах) от максимальной при возрастании температуры среды Ta.

S/b LIMITED – снижение по условию предотвращения вторичного пробоя.

DISSIPATION LIMITED – снижение по условию общего перегрева п/п структуры.

Рис. 7. Снижение предельной мощности рассеивания PC при нарастании температуры среды Ta.

Рис. 6. Область безопасной работы транзистора.

Характеристика получена в режиме подачи одиночного неповторяющегося импульса тока IC MAX (PULSED) разных длительностей: 100 мкс, 1 мс, 10 мс; при постоянном токе IC MAX (CONTINUOUS) и при его снижении (DC OPERATION).

Температура корпуса транзистора во всех режимах ограничивалась на уровне Tc = 25°C.

При увеличении температуры следует линейно снижать значения ограничивающих токов и напряжений (надпись на поле рисунка).

Шум

Максимальная чувствительность усилителей малых сигналов ограничена шумом случайных колебаний тока. Двумя основными источниками шума в транзисторах являются дробовой шум из-за потока носителей заряда в базе и тепловой шум. Источником теплового шума является сопротивление устройства, и с ростом температуры уровень теплового шума увеличивается:

где

  • k – постоянная Больцмана (1,38 · 10-23 Вт · с/К);
  • T – температура резистора в кельвинах;
  • R – сопротивление в омах;
  • Bш – полоса шума в герцах.

Шум в транзисторном усилителе определяется с точки зрения дополнительного шума, создаваемого усилителем, то есть не того шума, который усиливается от входа к выходу, а того, который генерируется в усилителе. Он определяется путем измерения отношения сигнал/шум (С/Ш, S/N) на входе и выходе усилителя. Выходное переменное напряжение усилителя с малым входным сигналом соответствует S + N, сумме сигнала и шума. Переменное напряжение без входного сигнала соответствует только шуму N. Величина шума F определяется через отношения S/N на входе и выходе усилителя.

\[F = {(S/N)_{вх} \over (S/N)_{вых}}\]

Величина шума F для радиочастотных (РЧ, RF) транзисторов обычно приводится в технических описаниях в децибелах, FдБ. На ОВЧ (очень высоких частотах, VHF, от 30 МГц до 300 МГц) хорошим показателем шума является величина <1 дБ. На частотах свыше ОВЧ уровень шума значительно увеличивается, 20 дБ на декаду, как показано на рисунке ниже.

Уровень шума малосигнального транзистора в зависимости от частоты

На рисунке выше также показано, что шум на низких частотах с уменьшением частоты увеличивается на 10 дБ за декаду. Этот шум известен как шум 1/f.

Уровень шума зависит от типа транзистора (модели). Радиочастотные транзисторы малых сигналов, используемые на антенном входе радиоприемников, специально разработаны для внесения малого уровня шума. Уровень шума зависит от тока смещения и согласования импедансов. Наилучший показатель шума для транзистора достигается при более низком токе смещения и, возможно, при рассогласовании импедансов.

Цоколёвка и маркировка КТ815

Цоколёвка транзистора КТ815 зависит от типа корпуса прибора. Существует два различных типа корпуса – КТ-27 и КТ-89. Первый случай используется для объёмного монтажа элементов, второй – для поверхностного. По зарубежной классификации, типы данных корпусов имеют, соответственно, следующие обозначения: TO -126 для первого случая и DPAK для второго случая.

Расположение выводов элемента прибора в корпусе КТ-27 имеет следующий порядок: эмиттер-коллектор-база, если смотреть на транзистор с его лицевой стороны. Для элемента в корпусе КТ-89, расположение выводов имеет следующий порядок: база-коллектор-эмиттер, где коллектором является верхний электрод прибора.

На сегодняшний день, применение элементов в корпусе КТ-27 ограничено, в основном, радиолюбительскими схемами и конструкциям. Элементы в корпусах КТ-89 применяются в изготовлении бытовой техники и по сей день.

Для маркировки данного прибора изначально использовали полное его название, например, КТ815А и дополняли маркировку месяцем и годом выпуска транзистора. В дальнейшем обозначения значительно сократили, оставив на корпусе элемента только одну букву, обозначающую тип элемента и цифру, например -5А для прибора КТ815А.

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач. И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):

Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора — выходной. Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы

I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

Для нее также указывается семейство характеристик для разных значений тока базы:

Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано.

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

I_к = \beta I_б

Двигаемся дальше

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора.

И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды. Разным значениям температуры соответствуют разные кривые.

Проверка КТ815

Не всегда покупаемые элементы оказываются в рабочем состоянии. Пусть бракованные элементы попадаются не так часто, но любой радиолюбитель или просто покупатель обязан знать, как проверить такой прибор.

Во-первых, проверить работоспособность КТ815 можно специальным пробником, но рассмотрим проверку обычным мультиметром, так как предыдущий прибор есть далеко не у всех.

Для проверки при помощи мультиметра, прибор нужно перевести в режим прозвонки. Сначала прикладываем отрицательный щуп к базе, а положительный к коллектору. На дисплее должно отобразиться значение от 500 до 800 мв. Затем меняем щупы, поставив на базу положительный, а на эмиттер отрицательный. Значения должны примерно равны прошлым.

Затем нужно проверить обратное падение напряжение. Для этого поставим сначала отрицательный щуп на базу, а положительный на коллектор. Должны получится единица. В случае с замером на базе и эмиттере, произойдёт то же самое.

Кратко о IGBT

Модуль IGBT также является полностью управляемым коммутатором с тремя контактами (затвор, коллектор и эмиттер). Его управляющий сигнал подается между затвором и эмиттером и нагрузкой между коллектором и эмиттером. 

Модуль IGBT специально разработан для быстрого включения и выключения. Фактически частота повторения импульсов достигает УЗ диапазона. Эта уникальная способность делает IGBT часто используемыми в усилителях класса D для синтеза сложных сигналов с широтно-импульсной модуляцией и фильтрами нижних частот. Они также используются для генерации импульсов большой мощности в таких областях, как физика элементарных частиц и плазма, а также играют важную роль в современных устройствах – электромобили, электровелосипеды, поезда, холодильники с регулируемой скоростью вращения компрессора, кондиционеры и многое другое. 

Кратко о MOSFET

MOSFET – это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком. 

Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества – более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).

Режимы работы

Транзистор биполярного типа может работать в 4 режимах:

  1. Активный.
  2. Отсечки (РО).
  3. Насыщения (РН).
  4. Барьерный (РБ).

Активный режим БТ бывает нормальным (НАР) и инверсным (ИАР).

Смотрите это видео на YouTube

Нормальный активный режим

При этом режиме на переходе Э-Б протекает U, которое является прямым и называется напряжением Э-Б (Uэ-б). Режим считается оптимальным и используется в большинстве схем. Переход Э осуществляет инжекцию зарядов в базовую область, которые перемещаются к коллектору. Последний ускоряет заряды, создавая эффект усиления.

Инверсный активный режим

В этом режиме переход К-Б открыт. БТ работает в обратном направлении, т. е. из К идет инжекция дырочных носителей заряда, проходящих через Б. Они собираются переходом Э. Свойства ПП к усилению слабые, и редко БТ применяются в этом режиме.

Режим насыщения

При РН оба перехода открыты. При подключении Э-Б и К-Б к внешним источникам в прямом направлении БТ будет работать в РН. Диффузионное электромагнитное поле Э и К переходов ослабляется электрическим полем, которое создается внешними источниками. В результате этого произойдет уменьшение барьерной способности и ограничение диффузной способности основных носителей заряда. Начнется инжекция дырок из Э и К в Б. Этот режим применяется в основном в аналоговой технике, однако в некоторых случаях возможны исключения.

Режим отсечки

При этом режиме БТ закрывается полностью и не способен проводить ток. Однако в БТ присутствуют незначительные потоки неосновных носителей зарядов, создающих тепловые токи с малыми значениями. Применяется этот режим в различных видах защиты от перегрузок и коротких замыканий.

Барьерный режим

База БТ соединяется через резистор с К. В цепь К или Э включается резистор, который задает величину тока (I) через БТ. БР часто применяется в схемах, т. к. позволяет работать БТ на любой частоте и в большем диапазоне температур.

Когда стоит использовать полевые МОП-транзисторы?

Биполярные и униполярные транзисторы — очень важные элементы, но возникает вопрос: когда их использовать? Оба типа имеют свои преимущества и недостатки, поэтому в некоторых проектах, один имеет преимущество перед другим. Использование биполярных транзисторов, безусловно, заслуживает внимания, когда схема питается от низкого напряжения (например, 1,5 В или 3,3 В), поскольку для ее работы достаточно напряжения 0,7 В. Униполярный транзистор может быть еще не полностью открыт в этих условиях.

МОП-транзисторы рекомендуются для управления нагрузками, потребляющими токи в диапазоне ампер, поскольку управляющий элемент (например, Arduino) не должен подавать на них питание — этого достаточно, чтобы установить достаточно высокий потенциал. Чтобы полностью открыть транзистор, приложите напряжение, в несколько раз превышающее пороговое напряжение между затвором и истоком (это напряжение включения).

МОП-транзисторы практически не потребляют ток от цепи, которая контролирует их работу!

Использование униполярных транзисторов рекомендуется там, где важно потребление тока. В некоторых проектах, особенно в схемах с питанием от небольших батарей, даже несколько микроампер, потребляемых базой биполярного транзистора, могут значительно сократить время работы устройства. Между эмиттером и коллектором полностью включенного (насыщенного) биполярного транзистора создается постоянное напряжение — обычно 0,2 В, но это значение может быть выше для мощных транзисторов

У униполярных транзисторов есть только сопротивление открытого канала, поэтому падение напряжения на них зависит от протекающего тока

Между эмиттером и коллектором полностью включенного (насыщенного) биполярного транзистора создается постоянное напряжение — обычно 0,2 В, но это значение может быть выше для мощных транзисторов. У униполярных транзисторов есть только сопротивление открытого канала, поэтому падение напряжения на них зависит от протекающего тока.

Напоследок еще одно практическое замечание. Если нам нужно контролировать, например, 10 так называемых сверхярких светодиодов, каждый через отдельный транзистор, то следует использовать 10 биполярных транзисторов вместе с 10 резисторами, по одному на каждую базу. Между тем, использование полевых МОП-транзисторов устранит необходимость в дополнительных резисторах, что сэкономит место на плате.

Подключение IRF3205

Подключение данного транзистора ничем не отличается от способа подключения остальных n-канальных МОП-транзисторов в корпусе ТО-220. Ниже Вы можете увидеть цоколевку выводов MOSFET’а:

Управление осуществляется затвором (gate). В теории, полевику все равно где у него сток, а где исток. Однако в жизни проблема заключается в том, что ради улучшения характеристик транзистора контакты стока и стока производители делают разными. А на мощных моделях из-за технического процесса образуется паразитный обратный диод.

Подключение к микроконтроллеру

Так как для открытия транзистора на затвор необходимо подать около 20В, то подключить его напрямую к МК, который выйдет максимум 5, не получится. Есть несколько способов решения этой задачи:

  • Регулировать напряжение на затворе менее мощным транзистором, благодаря которому можно управлять напряжением в 5В. В таком случае схема будет простая и все, что придется добавить — это два резистора (подтягивающий на 10 кОм и ограничивающий ток на 100 Ом)
  • Использовать специализированный драйвер. Такая микросхема будет формировать необходимый сигнал управления и выравнивать уровень между контроллером и транзистором. Ниже приведена одна из возможных схем для такого способа.
  • Воспользоваться другим транзистором, у которого вольтаж открытия будет ниже. Вот список наиболее мощных и распространенных транзисторов, которые можно использовать с микроконтроллерами такими, как arduino, например:
    • IRF3704ZPBF
    • IRLB8743PBF
    • IRL2203NPBF
    • IRLB8748PBF
    • IRL8113PBF

Техническая документация к электронным компонентам на русском языке.

Описание

Кремниевый NPN диффузионный транзистор для импульсных источников питания и преобразователей.

Особенности:

  • Мощный высоковольтный транзистор с высокой скоростью переключения.
  • Высокое напряжение пробоя: Vceo = 800 В.
  • Изолированный корпус.
Символы Параметр Условия Мин. значение Тип. значение Макс. значение Единицы
Vcbo Напряжение коллектор-база 900 В
Vceo Напряжение коллектор-эмиттер 800 В
Vebo Напряжение эмиттер-база 7 В
Ic Ток коллектора постоянный/импульсный 3,0/5,0 А
Pc Мощность, рассеиваемая на коллекторе T = 25 °C 25 Вт
hFE Коэффициент передачи тока в схеме ОЭ Vce = 5 В, Ic = 0,15 А 15
Vce_sat Напряжение насыщения К-Э Ic = 1,2 A, Ib = 0,24 А 1,0 В
Ib Ток базы 1,0 А
Tr/Tf Время нарастания/спада 0,5 0,7/0,5 мкс

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Главная О сайте Теория Практика Контакты

Высказывания: Если что-либо не работает, стукните это хорошенько, если оно сломалось — ничего, все равно нужно было выбрасывать.

Основные параметры биполярного низкочастотного npn транзистора 2SC5353

Эта страница создана пользователем сайта через систему Коллективного разума и показывает существующую справочную информацию о параметрах биполярного низкочастотного npn транзистора 2SC5353 . Информация о параметрах, цоколевке, характеристиках, местах продажи и производителях.

Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремнийСтруктура полупроводникового перехода: npn

Pc max, мВт Ucb max, В Uce max, В Ueb max, В Ic max, мА Tj max, °C Ft max, Гц Cc tip, пФ Hfe
25000 900 800 7 3000 +150 200000 15

  Bosch pke611d17e варочная панель как подключить провода

Производитель: UTCСфера применения: Популярность: 3246Условные обозначения описаны на странице «Теория».

Схемы транзистора 2SC5353

Общий вид транзистора 2SC5353. Цоколевка транзистора 2SC5353.

Обозначение контактов: Международное: C — коллектор, B — база, E — эмиттер. Российское: К — коллектор, Б — база, Э — эмиттер.

Дата создания страницы: 2016-02-03 08:45:50.

Другие разделы справочника:

Есть надежда, что справочник транзисторов окажется полезен опытным и начинающим радиолюбителям, конструкторам и учащимся. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте». Если Вы заметили ошибку, огромная просьба написать письмо. Спасибо за терпение и сотрудничество.

Биполярный транзистор 2SC5353 — описание производителя. Основные параметры. Даташиты.

Наименование производителя: 2SC5353

Тип материала: Si

Максимальная рассеиваемая мощность (Pc): 25 W

Макcимально допустимое напряжение коллектор-база (Ucb): 900 V

Макcимально допустимое напряжение коллектор-эмиттер (Uce): 800 V

Макcимально допустимое напряжение эмиттер-база (Ueb): 7 V

Макcимальный постоянный ток коллектора (Ic): 3 A

Предельная температура PN-перехода (Tj): 150 °C

Статический коэффициент передачи тока (hfe): 15

Корпус транзистора: TO220NIS

2SC5353 Datasheet (PDF)

1.1. 2sc5353.pdf Size:207K _toshiba

UNISONIC TECHNOLOGIES CO., LTD 2SC5353 NPN SILICON TRANSISTOR HIGH VOLTAGE NPN TRANSISTOR 1 1 TO-126 TO-126C DESCRIPTION Switching Regulator and High Voltage Switching Applications High-Speed DC-DC Converter Applications 1 1 TO-220 TO-220F FEATURES * Excellent switching times: tR = 0.7?s(MAX), tF = 0.5?s (MAX) * High collectors breakdown voltage: VCEO = 700V 1 TO-220F1

UNISONIC TECHNOLOGIES CO., LTD 2SC5353B NPN SILICON TRANSISTOR HIGH VOLTAGE NPN 1 1 TRANSISTOR TO-126 TO-126C DESCRIPTION 1 1 TO-220 TO-220F Switching Regulator and High Voltage Switching Applications High-Speed DC-DC Converter Applications. 1 1 FEATURES TO-220F1 TO-251 * Excellent switching times: tR = 0.7?s(MAX), tF = 0.5?s (MAX) * High collectors breakdown voltage:

«>

Производители

Транзисторы D882 изготавливаются следующими зарубежными фирмами:  SeCoS Halbleitertechnologie, Shenzhen Jingdao Electronic, SHIKE Electronics, Jiangsu Changjiang Electronics Technology, Daya Electric Group, Diode Semiconductor Korea,  SHENZHEN KOO CHIN ELECTRONICS, Shenzhen Jin Yu Semiconductor, STMicroelectronics, SHENZHEN YONGERJIA INDUSTRY, Shenzhen Electronics, GUANGDONG HOTTECH INDUSTRIAL, Stanson Technology, WILLAS ELECTRONIC CORP,  Galaxy Semi-Conductor Holdings Limited, Nanjing International Group.

На Российском рынке чаще всего встречаются устройство произведённое компаниями Shenzhen Electronics, STMicroelectronics.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: