2sc2482-y Микрокоммерческие компоненты, 2sc2482-y Лист данных
Ревизия: 1
ВЫКЛ. ХАРАКТЕРИСТИКИ
I
I
ПО ХАРАКТЕРИСТИКАМ
МАЛОСИГНАЛЬНЫЕ ХАРАКТЕРИСТИКИ
КЛАССИФИКАЦИЯ H
Характеристики
Электрические характеристики @ 25
Максимальные рейтинги
•
•
В
В
В
I
Генеральный директор
EBO
ч
В
В
f
Початок
Символ
CBO
т
Коммерческие микрокомпоненты
Символ
FE (1)
(BR) Генеральный директор
(BR) CBO
(BR) EBO
CE (сб)
BE
В
В
В
т
-P
M C C
т
СТГ
Генеральный директор
CBO
EBO
I
С
Высокое напряжение: Vceo = 300 В
Выходная емкость малого коллектора: Cob = 3.0 пФ (тип.)
С
Дж
Диапазон
Рейтинг
Напряжение коллектор-эмиттер
Напряжение пробоя коллектор-база
Напряжение эмиттер-база
Ток коллектора
Рассеиваемая мощность коллектора
Рабочая температура перехода
Температура хранения
Напряжение пробоя коллектор-эмиттер
Напряжение пробоя коллектор-база
Напряжение пробоя эмиттер-база
Ток отсечки коллектора
Ток отсечки коллектора
Ток отсечки эмиттера
Коэффициент усиления постоянного тока
Напряжение насыщения коллектор-эмиттер
Частота транзистора
f = 30 МГц)
Напряжение насыщения база-эмиттер
Выходная емкость коллектора
В
(I
(I
(I
(В
(В
(В
(I
(I
(I
(I
CB
С
С
E
С
С
С
С
= 100 мкА постоянного тока, I
CB
CB
EB
= 3 мА постоянного тока, I
= 100 мкА постоянного тока, I
= 20 мА постоянного тока, В
= 10 мА постоянного тока, I
= 10 мА постоянного тока, I
= 20 мА постоянного тока, В
=
= 7 В постоянного тока, I
= 240 В постоянного тока, I
= 220 В постоянного тока, I
20В, я
FE (1)
E
= 0, f = 1 МГц
С
В
Параметр
= 0)
Рейтинг
= 0)
В
В
С
E
CE
CE
= 1 мА пост. Тока)
= 1 мА пост. Тока)
E
В
= 0)
= 0)
= 0)
= 0)
30-90
= 10 В постоянного тока)
= 10 В постоянного тока,
O
www.mccsemi.com
TM
O
C Если не указано иное
компоненты
20736 Марилла Стрит Чатсуорт
! »№
$
%! «#
-55 до +150
-55 до +150
300
300
7
30
мин.
50
Рейтинг
—
—
—
—
—
0,1
0.9
7,0
300
300
3
—
90–150
Макс
1,0
1,0
—
—
—
5,0
150
1,0
1,0
Я
1 из 4
Блок
пФ
В
МГц
Вт
O
O
А
В
Квартир
В
мкА постоянного тока
С
С
мкА постоянного тока
мкА постоянного тока
В постоянного тока
В постоянного тока
В постоянного тока
В постоянного тока
В постоянного тока
—
DIM
С
D
G
H
кв. м
N
А
В
E
F
Дж
К
л
I
Эпитаксиальный кремний
ДЮЙМОВ
МИН
—
—
—
—
—
—
—
—
—
—
2SC2482
2SC2482-O
2SC2482-Y
Транзистор
С
F
А
В
D
.050
0,050
. 100
0,039
К-92МОД
123
МАКС
0,030
0,039
.031
0,024
.201
.087
0,024
. 323
. 413
. 161
H
E
НПН
РАЗМЕРЫ
G
МИН
—
—
—
—
—
—
—
—
—
—
ММ
1.27
1,27
2,54
1,00
МАКС
10,50
1.
C5353 описание
Объем бизнеса : auto IC, digital to аналоговая схема, single chip microcomputer, фотоэлектрическая муфта, хранение, трехклеммный регулятор напряжения, SCR, полевой эффект, Шоттки, реле, резисторы конденсаторов, Световая трубка, разъемы, и другие односторонние вспомогательные услуги! Модуль датчика стука и цифровой интерфейс 13, светодио дный встроенный светодиод создают простую схему для производства ударных мигалок Если вы выбираете Бесплатная Post Доставка с незарегистрированных, там не будет отслеживания в пункт назначения,Вы должны держать в touch с местном почтовом отделении все время до доставки. Если пакет будет взиматься таможенные пошлины, мы не несем ответственности за любые таможенные пошлины или налоги на импорт.
Datasheet Download — Toshiba Semiconductor
Номер произв | C2482 | ||
Описание | 2SC2482 | ||
Производители | Toshiba Semiconductor | ||
логотип | |||
1Page
TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT Process) • High breakdown voltage: VCEO = 300 V • Small collector output capacitance: Cob = 3.0 pF (typ.) • Recommended for chroma output and driver applications for line-operated TV horizontal. Maximum Ratings (Ta = 25°C) Characteristics VCBO VCEO VEBO IC IB PC Tj Tstg Rating −55 to 150 Unit Electrical Characteristics (Ta = 25°C) Characteristics ICBO IEBO hFE (1) hFE (2) VCE (sat) VBE (sat) fT Cob Test Condition VCB = 240 V, IE = 0 VEB = 7 V, IC = 0 VCE = 10 V, IC = 4 mA VCE = 10 V, IC = 20 mA IC = 10 mA, IB = 1 mA IC = 10 mA, IB = 1 mA VCE = 10 V, IC = 20 mA VCB = 20 V, IE = 0, f = 1 MHz JEDEC ― ― 1.0 µA ― ― 1.0 µA 20 ― ― 30 ― 150 ― ― 1.0 V ― ― 1.0 V 50 ― ― MHz ― 3.0 ― pF Marking
120
100 IC – VCE 6 Collector-emitter voltage VCE (V) 24 hFE – IC Common emitter Collector current IC (mA) 100 hFE – IC Common emitter 25 −25 1 3 10 30 Collector current IC (mA) 100 VCE (sat) – IC Common emitter Collector current IC (mA) 100 VCE (sat) – IC Common emitter −25 25 1 3 10 30 Collector current IC (mA) 100 VBE (sat) – IC Common emitter Collector current IC (mA) 100
100
Common emitter IC – VBE 60 −25 40 0.2 0.4 0.6 0.8 1.0 1.2 Base-emitter voltage VBE (V) Cob – VCB 100 50 f = 1 MHz Ta = 25°C Collector-base voltage VCB (V) 100 fT – IC Common emitter Collector current IC (mA) 100 IC max (pulsed)* 300 µs* IC max (continuous) 10 ms* 100 ms* 50 500 ms* 30 *: Single nonrepetitive pulse 5 Ta = 25°C Curves must be derated linearly with Collector-emitter voltage VCE (V) 3 2004-07-26 |
|||
Всего страниц | 4 Pages | ||
Скачать PDF |
Маркировка
Маркируется на корпусе цифрами “13003”, указывающими на серийный номер устройства по системе JEDEC. Префикс MJE, в начале указывает на происхождение устройства у именитого брэнда — компании Motorola. В настоящее время префикс mje в обозначении своей продукции добавляют и другие производители радиоэлектронного оборудования. Так что, не удивительно встретить транзистор с таким префиксом от другого компании.
Также, вместо MJE, но с другими буквами в названиях, могут встречается похожие устройства: ST13003 SOT-32 (ST Microelectronics), FJP13003, KSE 13003 (Fairchild). В последнее время стали встречается копии устройств от китайских компаний с такой маркировкой на корпусе: 13003d, 13003br, j13003, e13003. В большинстве случаев у приборов с буквой “d” в конце есть встроенный защитный диод, а у остальных меньшая мощность до 25 Вт.
Схема NPN транзистора
Когда NPN транзистор связан с ресурсами напряжения, базовый ток будет проходить через транзистор. Даже небольшое количество базы контролирует циркуляцию большого количества тока через эмиттер к коллектору. Напряжение базы выше, чем напряжение на эмиттере.
Когда VB базовое напряжение не -ve по сравнению с VE напряжение эмиттера, ток не может проходить в цепи. Таким образом, необходимо обеспечить подачу напряжения обратного смещения> 0.72 Вольт.
Резисторы RL и RB включены в цепь. Это ограничивает ток, проходящий через максимально возможную высоту транзистора.
Напряжение эмиттера VEB как входная сторона. Здесь ток эмиттера (IE) течет со стороны входа и течет в двух направлениях; один яB а другое это яC.
IE= ЯB+ ЯC
Металл-воздушные транзисторы
По своей сути принципы работы и конструкция металл-воздушного транзистора напоминает транзисторы MOSFET. За некоторыми исключениями: стоком и истоком нового транзистора являются металлические электроды. Затвор устройства расположен под ними и заизолирован оксидной пленкой. Сток и исток установлены друг от друга на расстоянии тридцати нанометров, что позволяет электронам свободно проходить сквозь воздушное пространство. Обмен заряженными частицами происходит за счет автоэлектронной эмиссии.
Разработкой металл-воздушных транзисторов занимается команда из университета в Мельбурне — RMIT. Инженеры говорят, что технология «вдохнет новую жизнь» в закон Мура и позволит строить целые 3D-сети из транзисторов. Производители чипов смогут перестать заниматься бесконечным уменьшением техпроцессов и займутся формированием компактных 3D-архитектур.
Сейчас команда ищет инвесторов, чтобы продолжить свои исследования и разрешить технологические сложности. Электроды стока и истока плавятся под воздействием электрического поля — это снижает производительность транзистора. Недостаток планируют поправить в ближайшие пару лет. После этого инженеры начнут подготовку к выводу продукта на рынок. О чем еще мы пишем в нашем корпоративном блоге:
- VMware EMPOWER 2021: делимся впечатлениями
- Перспективы дата-центров: технологии, которые повысят производительность серверов
- Процессоры для серверов: обсуждаем новинки
- Развитие дата-центров: технологические тренды
- Как повысить энергоэффективность дата-центра
- Как разместить 100% инфраструктуры в облаке IaaS-провайдера и не пожалеть об этом
- «Как дела у VMware»: обзор новых решений
Характеристики основных аналогов
Наименование производителя: 2N5551
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 0.31 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 180 V
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 160 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
- Макcимальный постоянный ток коллектора (Ic): 0.6 A
- Предельная температура PN-перехода (Tj): 135 °C
- Граничная частота коэффициента передачи тока (ft): 100 MHz
- Ёмкость коллекторного перехода (Cc): 6 pf
- Статический коэффициент передачи тока (hfe): 80
- Корпус транзистора: TO92
Наименование производителя: 2N5551C
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 0.625 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 180 V
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 160 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
- Макcимальный постоянный ток коллектора (Ic): 0.6 A
- Предельная температура PN-перехода (Tj): 150 °C
- Граничная частота коэффициента передачи тока (ft): 300 MHz
- Ёмкость коллекторного перехода (Cc): 6 pf
- Статический коэффициент передачи тока (hfe): 80
- Корпус транзистора: TO92
Наименование производителя: 2N5551CN
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 0.4 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 180 V
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 160 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
- Макcимальный постоянный ток коллектора (Ic): 0.6 A
- Предельная температура PN-перехода (Tj): 150 °C
- Граничная частота коэффициента передачи тока (ft): 150 MHz
- Ёмкость коллекторного перехода (Cc): 3 pf
- Статический коэффициент передачи тока (hfe): 80
- Корпус транзистора: TO-92N
Наименование производителя: 2N5551G
- Тип материала: Si
- Полярность: NPN
- Максимальная рассеиваемая мощность (Pc): 0.625 W
- Макcимально допустимое напряжение коллектор-база (Ucb): 180 V
- Макcимально допустимое напряжение коллектор-эмиттер (Uce): 160 V
- Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
- Макcимальный постоянный ток коллектора (Ic): 0.6 A
- Предельная температура PN-перехода (Tj): 150 °C
- Граничная частота коэффициента передачи тока (ft): 100 MHz
- Ёмкость коллекторного перехода (Cc): 6 pf
- Статический коэффициент передачи тока (hfe): 80
- Корпус транзистора: TO-92_SOT-89
Транзистор C5353 ничего хорошего не принес и плохого
Новые книги Шпионские штучки: Новое и лучшее схем для радиолюбителей: Шпионские штучки и не только 2-е издание Arduino для изобретателей. Обучение электронике на 10 занимательных проектах Конструируем роботов. Руководство для начинающих Компьютер в лаборатории радиолюбителя Радиоконструктор 3 и 4 Шпионские штучки и защита от них. Сборник 19 книг Занимательная электроника и электротехника для начинающих и не только Arduino для начинающих: самый простой пошаговый самоучитель Радиоконструктор 1 Обновления Подавитель сотовой связи большой мощности. Перед тем как создавать тему на форуме, воспользуйтесь поиском! Пользователь создавший тему, которая уже была, будет немедленно забанен!
Соответствие: отечественный транзистор ⇒ импортный аналог
|
|
|
|
.
О транзисторе
Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.
Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. В таблице ниже представлена цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.
Таблица маркировки маломощных среднечастотных и высокочастотных транзисторов.
Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления.
Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N.
На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход.
Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.
Для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h21э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.
Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода. В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.
Современный многофункциональный мультиметр.
Проверка работоспособности транзистора
Подключаем на базу полевого транзистора плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение. Затем минусовым щупом подключаем к выводу эмиттера и измеряем. Если переходы транзистора не пробиты, то падение напряжения на коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.
Будет интересно Варианты схем подключения проходных выключателей
Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.
Теперь произведём обратное измерение коллекторного и эмиттерного перехода.
Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует.
Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства.
При этом во многих случаях можно обойтись и без выпаивания его из платы.
Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением.
Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.
Пошаговая инструкция проверки мультимером
Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.
Проверка мультимером NPN транзистора состоит из таких последовательных операций:
- Проверяем обратное сопротивление, для этого присоединяем «плюсовой» щуп прибора к его базе.
- Тестируется эмиттерный переход, для этого «минусовой» щуп подключаем к эмиттеру.
- Для проверки коллектора перемещаем на него «минусовой» щуп.
Результаты этих измерений должны показать сопротивление в пределах значения «1».
Для проверки прямого сопротивления меняем щупы местами:
- «Минусовой» щуп прибора присоединяем к базе.
- «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
- На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.
Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.
Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.
База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.
Основные технические характеристики
13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.
Предельные режимы эксплуатации
13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.
Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%
Электрические характеристики
Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.
Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.
Что такое NPN транзистор?
Транзисторы вытеснили электролампы, позволили уменьшить количество реле, переключателей в устройствах. Это полупроводниковые триоды — радиоэлектронные компоненты из полупроводников, стандартно имеют 3 вывода.
Транзисторы, предназначенные для управления током, то есть основным силовым фактором электросхем, именно его удар (не напряжения) несет опасность для человека.
Элемент способен контролировать чрезвычайно высокие величины в выходных цепях при подаче слабого входного сигнала. Транзисторы повышают, генерируют, коммутируют, преобразовывают электросигналы, это основа микроэлектроники, электроустройств.
Разновидности по принципу действия:
- биполярный транзистор из 2 типов проводников, в основе функционирования – взаимодействие на кристалле соседних p-n участков. Состоят из эмиттера/коллектора/базы (далее, эти термины будем сокращать): на последнюю идет слабый ток, вызывающий модификацию сопротивления (дальше по тексту «сопр.») в линии, состоящей из первых 2 элементов. Таким образом, протекающая величина меняется, сторона ее однонаправленности (n-p-n или p-n-p) определяется характеристиками переходов (участков) в соответствии с полярностью подключения (обратно, прямо). Управление осуществляется модулированием тока на сегменте база/эмит., вывод последнего всегда общий для сигналов управления и выхода;
- полевой. Тип проводника один — узкий канал, подпадающий под электрополе обособленного затворного прохода. Контроль основывается на модуляции количества Вольт между ним и истоком. А между последним и стоком течет электроток (2 рабочие контакты). Величина имеет силу, зависящую от сигналов, формируемых между затвором (контакт контроля) и одной из указанных частей. Есть изделия с p-n участком управления (рабочие контакты подключаются к p- или n-полупроводнику) или с обособленными затворами.
У полевиков есть варианты полярности, для управления требуется низкий вольтаж, из-за экономичности их ставят в радиосхемы с маломощными БП. Биполярные варианты активируются токами. В аналоговых сборках превалируют вторые (БТ, BJT), в цифровых (процессоры, компьютеры) — первые. Есть также гибриды — IGBT, применяются в силовых схемах.
Туннельные транзисторы
Одной из главных задач производителей полупроводниковых устройств является проектирование транзисторов, которые можно переключать малыми напряжениями. Решить её способны туннельные транзисторы. Такие устройства управляются с помощью квантового туннельного эффекта. Таким образом, при наложении внешнего напряжения переключение транзистора происходит быстрее, так как электроны с большей вероятностью преодолевают диэлектрический барьер. В результате устройству требуется в несколько раз меньшее напряжение для работы.
Разработкой туннельных транзисторов занимаются ученые из МФТИ и японского университета Тохоку. Они использовали двухслойный графен, чтобы создать устройство, которое работает в 10–100 раз быстрее кремниевых аналогов. По словам инженеров, их технология позволит спроектировать процессоры, которые будут в двадцать раз производительнее современных флагманских моделей.
/ фото PxHere PD
В разное время прототипы туннельных транзисторов реализовывались с использованием различных материалов — помимо графена, ими были нанотрубки и кремний. Однако технология до сих пор не покинула стены лабораторий, и о масштабном производстве устройств на её основе речи не идет.