What is c5242?

Характеристики транзистора 2sc5200

2sc2482-y Микрокоммерческие компоненты, 2sc2482-y Лист данных

Ревизия: 1

ВЫКЛ. ХАРАКТЕРИСТИКИ

I

I

ПО ХАРАКТЕРИСТИКАМ

МАЛОСИГНАЛЬНЫЕ ХАРАКТЕРИСТИКИ

КЛАССИФИКАЦИЯ H

Характеристики

Электрические характеристики @ 25

Максимальные рейтинги

В

В

В

I

Генеральный директор

EBO

ч

В

В

f

Початок

Символ

CBO

т

Коммерческие микрокомпоненты

Символ

FE (1)

(BR) Генеральный директор

(BR) CBO

(BR) EBO

CE (сб)

BE

В

В

В

т

-P

M C C

т

СТГ

Генеральный директор

CBO

EBO

I

С

Высокое напряжение: Vceo = 300 В

Выходная емкость малого коллектора: Cob = 3.0 пФ (тип.)

С

Дж

Диапазон

Рейтинг

Напряжение коллектор-эмиттер

Напряжение пробоя коллектор-база

Напряжение эмиттер-база

Ток коллектора

Рассеиваемая мощность коллектора

Рабочая температура перехода

Температура хранения

Напряжение пробоя коллектор-эмиттер

Напряжение пробоя коллектор-база

Напряжение пробоя эмиттер-база

Ток отсечки коллектора

Ток отсечки коллектора

Ток отсечки эмиттера

Коэффициент усиления постоянного тока

Напряжение насыщения коллектор-эмиттер

Частота транзистора

f = 30 МГц)

Напряжение насыщения база-эмиттер

Выходная емкость коллектора

В

(I

(I

(I

(I

(I

(I

(I

CB

С

С

E

С

С

С

С

= 100 мкА постоянного тока, I

CB

CB

EB

= 3 мА постоянного тока, I

= 100 мкА постоянного тока, I

= 20 мА постоянного тока, В

= 10 мА постоянного тока, I

= 10 мА постоянного тока, I

= 20 мА постоянного тока, В

=

= 7 В постоянного тока, I

= 240 В постоянного тока, I

= 220 В постоянного тока, I

20В, я

FE (1)

E

= 0, f = 1 МГц

С

В

Параметр

= 0)

Рейтинг

= 0)

В

В

С

E

CE

CE

= 1 мА пост. Тока)

= 1 мА пост. Тока)

E

В

= 0)

= 0)

= 0)

= 0)

30-90

= 10 В постоянного тока)

= 10 В постоянного тока,

O

www.mccsemi.com

TM

O

C Если не указано иное

компоненты

20736 Марилла Стрит Чатсуорт

! »№

$
%! «#

-55 до +150

-55 до +150

300

300

7

30

мин.

50

Рейтинг

0,1

0.9

7,0

300

300

3

90–150

Макс

1,0

1,0

5,0

150

1,0

1,0

Я

1 из 4

Блок

пФ

В

МГц

Вт

O

O

А

В

Квартир

В

мкА постоянного тока

С

С

мкА постоянного тока

мкА постоянного тока

В постоянного тока

В постоянного тока

В постоянного тока

В постоянного тока

В постоянного тока

DIM

С

D

G

H

кв. м

N

А

В

E

F

Дж

К

л

I

Эпитаксиальный кремний

ДЮЙМОВ

МИН

2SC2482

2SC2482-O

2SC2482-Y

Транзистор

С

F

А

В

D

.050

0,050

. 100

0,039

К-92МОД

123

МАКС

0,030

0,039

.031

0,024

.201

.087

0,024

. 323

. 413

. 161

H

E

НПН

РАЗМЕРЫ

G

МИН

ММ

1.27

1,27

2,54

1,00

МАКС

10,50

1.

C5353 описание

Объем бизнеса : auto IC, digital to аналоговая схема, single chip microcomputer, фотоэлектрическая муфта, хранение, трехклеммный регулятор напряжения, SCR, полевой эффект, Шоттки, реле, резисторы конденсаторов, Световая трубка, разъемы, и другие односторонние вспомогательные услуги! Модуль датчика стука и цифровой интерфейс 13, светодио дный встроенный светодиод создают простую схему для производства ударных мигалок Если вы выбираете Бесплатная Post Доставка с незарегистрированных, там не будет отслеживания в пункт назначения,Вы должны держать в touch с местном почтовом отделении все время до доставки. Если пакет будет взиматься таможенные пошлины, мы не несем ответственности за любые таможенные пошлины или налоги на импорт.

Datasheet Download — Toshiba Semiconductor

Номер произв C2482
Описание 2SC2482
Производители Toshiba Semiconductor
логотип  

1Page

No Preview Available !

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT Process)
2SC2482
High-Voltage Switching and Amplifier Applications
Color TV Horizontal Driver Applications
Color TV Chroma Output Applications
2SC2482
Unit: mm

• High breakdown voltage: VCEO = 300 V

• Small collector output capacitance: Cob = 3.0 pF (typ.)

• Recommended for chroma output and driver applications for

line-operated TV horizontal.

Maximum Ratings (Ta = 25°C)

Characteristics
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Base current
Collector power dissipation
Junction temperature
Storage temperature range
Symbol

VCBO

VCEO

VEBO

IC

IB

PC

Tj

Tstg

Rating
300
300
7
100
50
900
150

−55 to 150

Unit
V
V
V
mA
mA
mW
°C
°C

Electrical Characteristics (Ta = 25°C)

Characteristics
Collector cut-off current
Emitter cut-off current
DC current gain
Collector-emitter saturation voltage
Base-emitter saturation voltage
Transition frequency
Collector output capacitance
Symbol

ICBO

IEBO

hFE (1)

hFE (2)

VCE (sat)

VBE (sat)

fT

Cob

Test Condition

VCB = 240 V, IE = 0

VEB = 7 V, IC = 0

VCE = 10 V, IC = 4 mA

VCE = 10 V, IC = 20 mA

IC = 10 mA, IB = 1 mA

IC = 10 mA, IB = 1 mA

VCE = 10 V, IC = 20 mA

VCB = 20 V, IE = 0, f = 1 MHz

JEDEC
TO-92MOD
JEITA

TOSHIBA
2-5J1A
Weight: 0.36 g (typ.)
Min Typ. Max Unit

― ― 1.0 µA

― ― 1.0 µA

20 ― ―

30 ― 150

― ― 1.0 V

― ― 1.0 V

50 ― ― MHz

― 3.0 ― pF

Marking
C2482
Part No. (or abbreviation code)
Lot No.
A line indicates
lead (Pb)-free package or
lead (Pb)-free finish.
1
2004-07-26

No Preview Available !

120

100
80
60
40
20

IC – VCE

6
4
Common emitter
Ta = 25°C
32
1
0.6
0.4
IB = 0.2 mA
4 8 12 16 20

Collector-emitter voltage VCE (V)

24
2SC2482
1000
500
300
100
50
30
10
5
0.3

hFE – IC

Common emitter
Ta = 25°C
VCE = 20 V
10
5
1 3 10 30

Collector current IC (mA)

100
1000
500
300
100
50
30
10
5
0.3

hFE – IC

Common emitter
VCE = 10 V
Ta = 100°C

25 −25

1 3 10 30

Collector current IC (mA)

100
10
5
3
1
0.5
0.3
0.1
0.05
0.3

VCE (sat) – IC

Common emitter
Ta = 25°C
IC/IB = 10
5
2
1 3 10 30

Collector current IC (mA)

100
10
5
3
1
0.5
0.3
0.1
0.05
0.3

VCE (sat) – IC

Common emitter
IC/IB = 5
Ta = 100°C

−25 25

1 3 10 30

Collector current IC (mA)

100
10
5
3
1
0.5
0.3
0.0
0.05
0.3

VBE (sat) – IC

Common emitter
IC/IB = 5
Ta = 25°C
1 3 10 30

Collector current IC (mA)

100
2 2004-07-26

No Preview Available !

100

Common emitter
VCE = 10 V
80

IC – VBE

60
Ta = 100°C 25

−25

40
20

0.2 0.4 0.6 0.8 1.0 1.2

Base-emitter voltage VBE (V)

Cob – VCB

100
IE = 0

50 f = 1 MHz

Ta = 25°C
30
10
5
3
1
0.5
0.3
1 3 10 30

Collector-base voltage VCB (V)

100
2SC2482
1000
500
300
100
50
30
10
5
0.3

fT – IC

Common emitter
Ta = 25°C
VCE = 20 V
5 10
1 3 10 30

Collector current IC (mA)

100
Safe Operating Area
300

IC max (pulsed)*

300 µs*

IC max (continuous)
100
1 ms

10 ms*

100 ms*

50 500 ms*

30
DC operation
Ta = 25°C
10

*: Single nonrepetitive pulse

5 Ta = 25°C

Curves must be derated linearly with
increase in temperature.
2
3 10 30
VCE max
100 300

Collector-emitter voltage VCE (V)

3 2004-07-26

Всего страниц 4 Pages
Скачать PDF

Маркировка

Маркируется на корпусе цифрами “13003”, указывающими на серийный номер устройства по системе JEDEC. Префикс MJE, в начале указывает на происхождение устройства у именитого брэнда — компании Motorola. В настоящее время префикс mje в обозначении своей продукции добавляют и другие производители радиоэлектронного оборудования. Так что, не удивительно встретить транзистор с таким префиксом от другого компании.

Также, вместо MJE, но с другими буквами в названиях, могут встречается похожие устройства: ST13003 SOT-32 (ST Microelectronics), FJP13003, KSE 13003 (Fairchild). В последнее время стали встречается копии устройств от китайских компаний с такой маркировкой на корпусе: 13003d, 13003br, j13003, e13003. В большинстве случаев у приборов с буквой “d” в конце есть встроенный защитный диод, а у остальных меньшая мощность до 25 Вт.

Схема NPN транзистора

Когда NPN транзистор связан с ресурсами напряжения, базовый ток будет проходить через транзистор. Даже небольшое количество базы контролирует циркуляцию большого количества тока через эмиттер к коллектору. Напряжение базы выше, чем напряжение на эмиттере.

Когда VB базовое напряжение не -ve по сравнению с VE напряжение эмиттера, ток не может проходить в цепи. Таким образом, необходимо обеспечить подачу напряжения обратного смещения> 0.72 Вольт.

Резисторы RL и RB включены в цепь. Это ограничивает ток, проходящий через максимально возможную высоту транзистора.

Напряжение эмиттера VEB как входная сторона. Здесь ток эмиттера (IE) течет со стороны входа и течет в двух направлениях; один яB а другое это яC.

IE= ЯB+ ЯC

Металл-воздушные транзисторы

По своей сути принципы работы и конструкция металл-воздушного транзистора напоминает транзисторы MOSFET. За некоторыми исключениями: стоком и истоком нового транзистора являются металлические электроды. Затвор устройства расположен под ними и заизолирован оксидной пленкой. Сток и исток установлены друг от друга на расстоянии тридцати нанометров, что позволяет электронам свободно проходить сквозь воздушное пространство. Обмен заряженными частицами происходит за счет автоэлектронной эмиссии.

Разработкой металл-воздушных транзисторов занимается команда из университета в Мельбурне — RMIT. Инженеры говорят, что технология «вдохнет новую жизнь» в закон Мура и позволит строить целые 3D-сети из транзисторов. Производители чипов смогут перестать заниматься бесконечным уменьшением техпроцессов и займутся формированием компактных 3D-архитектур.

Сейчас команда ищет инвесторов, чтобы продолжить свои исследования и разрешить технологические сложности. Электроды стока и истока плавятся под воздействием электрического поля — это снижает производительность транзистора. Недостаток планируют поправить в ближайшие пару лет. После этого инженеры начнут подготовку к выводу продукта на рынок. О чем еще мы пишем в нашем корпоративном блоге:

  • VMware EMPOWER 2021: делимся впечатлениями
  • Перспективы дата-центров: технологии, которые повысят производительность серверов
  • Процессоры для серверов: обсуждаем новинки
  • Развитие дата-центров: технологические тренды
  • Как повысить энергоэффективность дата-центра
  • Как разместить 100% инфраструктуры в облаке IaaS-провайдера и не пожалеть об этом
  • «Как дела у VMware»: обзор новых решений

Характеристики основных аналогов

Наименование производителя: 2N5551

  • Тип материала: Si
  • Полярность: NPN
  • Максимальная рассеиваемая мощность (Pc): 0.31 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 180 V
  • Макcимально допустимое напряжение коллектор-эмиттер (Uce): 160 V
  • Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
  • Макcимальный постоянный ток коллектора (Ic): 0.6 A
  • Предельная температура PN-перехода (Tj): 135 °C
  • Граничная частота коэффициента передачи тока (ft): 100 MHz
  • Ёмкость коллекторного перехода (Cc): 6 pf
  • Статический коэффициент передачи тока (hfe): 80
  • Корпус транзистора: TO92

Наименование производителя: 2N5551C

  • Тип материала: Si
  • Полярность: NPN
  • Максимальная рассеиваемая мощность (Pc): 0.625 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 180 V
  • Макcимально допустимое напряжение коллектор-эмиттер (Uce): 160 V
  • Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
  • Макcимальный постоянный ток коллектора (Ic): 0.6 A
  • Предельная температура PN-перехода (Tj): 150 °C
  • Граничная частота коэффициента передачи тока (ft): 300 MHz
  • Ёмкость коллекторного перехода (Cc): 6 pf
  • Статический коэффициент передачи тока (hfe): 80
  • Корпус транзистора: TO92

Наименование производителя: 2N5551CN

  • Тип материала: Si
  • Полярность: NPN
  • Максимальная рассеиваемая мощность (Pc): 0.4 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 180 V
  • Макcимально допустимое напряжение коллектор-эмиттер (Uce): 160 V
  • Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
  • Макcимальный постоянный ток коллектора (Ic): 0.6 A
  • Предельная температура PN-перехода (Tj): 150 °C
  • Граничная частота коэффициента передачи тока (ft): 150 MHz
  • Ёмкость коллекторного перехода (Cc): 3 pf
  • Статический коэффициент передачи тока (hfe): 80
  • Корпус транзистора: TO-92N

Наименование производителя: 2N5551G

  • Тип материала: Si
  • Полярность: NPN
  • Максимальная рассеиваемая мощность (Pc): 0.625 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 180 V
  • Макcимально допустимое напряжение коллектор-эмиттер (Uce): 160 V
  • Макcимально допустимое напряжение эмиттер-база (Ueb): 6 V
  • Макcимальный постоянный ток коллектора (Ic): 0.6 A
  • Предельная температура PN-перехода (Tj): 150 °C
  • Граничная частота коэффициента передачи тока (ft): 100 MHz
  • Ёмкость коллекторного перехода (Cc): 6 pf
  • Статический коэффициент передачи тока (hfe): 80
  • Корпус транзистора: TO-92_SOT-89

Транзистор C5353 ничего хорошего не принес и плохого

Новые книги Шпионские штучки: Новое и лучшее схем для радиолюбителей: Шпионские штучки и не только 2-е издание Arduino для изобретателей. Обучение электронике на 10 занимательных проектах Конструируем роботов. Руководство для начинающих Компьютер в лаборатории радиолюбителя Радиоконструктор 3 и 4 Шпионские штучки и защита от них. Сборник 19 книг Занимательная электроника и электротехника для начинающих и не только Arduino для начинающих: самый простой пошаговый самоучитель Радиоконструктор 1 Обновления Подавитель сотовой связи большой мощности. Перед тем как создавать тему на форуме, воспользуйтесь поиском! Пользователь создавший тему, которая уже была, будет немедленно забанен!

Соответствие: отечественный транзистор ⇒ импортный аналог

Транзистор Аналог
КТ209 MPS404
КТ368А9 BF599
КТ3102АМ КТ3102БМ КТ3102ВМ КТ3102ДМ BC547A BC547B BC548B BC549C
КТ3107БМ КТ3107ГМ КТ3107ДМ КТ3107ЖМ КТ3107ИМ КТ3107КМ КТ3107ЛМ BC308A BC308A BC308B BC309B BC307B BC308C BC309C
КТ3117А КТ3117Б 2N2221 2N2222A
КТ3126А BF506
КТ3127А 2N4411
КТ3129Б9 КТ3129В9 КТ3129Г9 BC857A BC858A BC858B
КТ3130А9 КТ3130Б9 КТ3130В9 BCW71 BCW72 BCW31
КТ3142А 2N2369
КТ3189А9 КТ3189Б9 КТ3189В9 BC847A BC847B BC847C
КТ635Б 2N3725
КТ639А КТ639Б КТ639В КТ639Г КТ639Д КТ639Е КТ639Ж BD136-6 BD136-10 BD136-16 BD138-6 BD138-10 BD140-6 BD140-10
КТ644А КТ644Б КТ644В КТ644Г PN2905A PN2906 PN2907 PN2907A
КТ645А КТ645Б 2N4400 2N4400
КТ646А КТ646Б 2SC495 2SC496
КТ660А КТ660Б BC337 BC338
Транзистор Аналог
КТ668А КТ668Б КТ668В BC556 BC557 BC558
КТ940А BF458
КТ940Б КТ940В BF457 BF459
КТ961А КТ961Б КТ961В BD139 BD137 BD135
КТ969А BF469
КТ972А КТ972Б BD877 BD875
КТ684А КТ684Б КТ684В BC636 BC638 BC640
КТ685А КТ685Б КТ685В КТ685Г PN2906 PN2906A PN2907 PN2907A
КТ686А КТ686Б КТ686В КТ686Г КТ686Д КТ686Е BC327-16 BC327-25 BC327-40 BC328-16 BC328-25 BC328-40
КТ6109А КТ6109Б КТ6109В КТ6109Г КТ6109Д SS9012D SS9012E SS9012F SS9012G SS9012H
КТ6110А КТ6110Б КТ6110В КТ6110Г КТ6110Д SS9013D SS9013E SS9013F SS9013G SS9013H
КТ6111А КТ6111Б КТ6111В КТ6111Г SS9014A SS9014B SS9014C SS9014D
КТ6112А КТ6112Б КТ6112В SS9015A SS9015B SS9015C
КТ6113А КТ6113Б КТ6113В КТ6113Г КТ6113Д КТ6113Е SS9018D SS9018E SS9018F SS9018G SS9018H SS9018I
Транзистор Аналог
КТ6114А КТ6114Б КТ6114В SS8050B SS8050C SS8050D
КТ6115А КТ6115Б КТ6115В SS8550B SS8550C SS8550D
КТ6116А КТ6116Б 2N5401 2N5400
КТ6117А КТ6117Б 2N5551 2N5550
КТ6128А КТ6128Б SS9016D SS9016E
КТ973А КТ973Б BD878 BD876
KT9116A KT9116Б TPV-394 TPV-375
KT9133A TPV-376
KT9142A 2SC3218
KT9150 TPV-595
KT9151A 2SC3812
KT9152A 2SC3660
КТ6136А 2N3906
КТ728А КТ729А MJ3055 2N3055
КТ808АМ КТ808БМ 2SC1619A 2SC1618
КТ814Б КТ814В КТ814Г BD136 BD138 BD140
КТ815Б КТ815В КТ815Г BD135 BD137 BD139
КТ817Б КТ817В КТ817Г BD233 BD235 BD237
КТ818Б TIP42
КТ819Б TIP41
КТ840А КТ840Б BU326A BU126
Транзистор Аналог
КТ856А КТ856Б BUX48A BUX48
КТ867А BUY21
КТ872А КТ872Б КТ872Г BU508A BU508 BU508D
КТ878А КТ878Б КТ878В BUX98 2N6546 BUX98A
КТ879А КТ879Б 2N6279 2N6278
КТ892А КТ892Б КТ892В TIP661 BU932Z TIP662
КТ899А 2N6388
КТ8107А BU508A
КТ8109А TIP151
КТ8110А 2SC4242
КТ8121А MJE13005
КТ8126А КТ8126Б MJE13007 MJE13006
КТ8164А КТ8164Б MJE13005 MJE13004
КТ8170А1 КТ8170Б1 MJE13003 MJE13002
КТ8176А КТ8176Б КТ8176В TIP31A TIP31B TIP31C
КТ8177А КТ8177Б КТ8177В TIP32A TIP32B TIP32C
КТ6128В КТ6128Г КТ6128Д КТ6128Е SS9016F SS9016G SS9016H SS9016I
КТ6137А 2N3904
КТ928А 2N2218
КТ928Б КТ928В 2N2219 2N2219A

.

О транзисторе

Давайте вспомним о том, что вне зависимости от того, проверяем мы транзистор с прямой или обратной проводимостью, они имеют два p-n перехода. Любой из этих переходов можно сопоставить с диодом. Исходя из этого, можно с уверенностью заявить, что транзистор представляют собой пару диодов, соединённых параллельно, а место их соединения, является базой.

Таким образом получается, что у одного из диодов выводы будут представлять собой базу и коллектор, а у второго диода выводы будут представлять базу и эмиттер, или наоборот. В таблице ниже представлена цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.

Таблица маркировки маломощных среднечастотных и высокочастотных транзисторов.

Исходя из выше написанного, наша задача сводится к проверке напряжения падения на полупроводниковом приборе, или проверки его сопротивления.

Если диоды работоспособны, значит и проверяемый элемент рабочий.Для начала рассмотрим транзистор с обратной проводимостью, то есть имеющим структуру проводимости N-P-N.

На электрических схемах, разных устройств, структуру транзистора определяют с помощью стрелки, которая указывает эмиттерный переход.

Так если стрелка указывает на базу, значит, мы имеем дело c с транзистором прямой проводимости, имеющим структуру p-n-p, а если наоборот, значит это транзистор с обратной проводимостью, имеющий структуру n-p-n.

Для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h21э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.

Для открытия транзистора с прямой проводимостью, нужно дать отрицательное напряжение на базу. Для этого берём мультиметр, включаем его, и после этого выбираем режим измерения прозвонки, обычно он обозначается символическим изображением диода. В этом режиме прибор показывает падение напряжения в мВ. Благодаря этому мы можем определить кремниевый или германиевый диод или транзистор. Если падение напряжения лежит в пределах 200-400 мВ, то перед нами германиевый полупроводник, а если 500-700 кремниевый.

Современный многофункциональный мультиметр.

Проверка работоспособности транзистора

Подключаем на базу полевого транзистора плюсовой щуп (красный цвет), другим щупом (черный- минус) подключаем к выводу коллектора и делаем измерение. Затем минусовым щупом подключаем к выводу эмиттера и измеряем. Если переходы транзистора не пробиты, то падение напряжения на коллекторном и эмиттерном переходе должно быть на границе от 200 до 700 мВ.

Будет интересно Варианты схем подключения проходных выключателей

Для этого берем, подключаем черный щуп к базе, а красный по очереди подключаем к эмиттеру и коллектору, производя измерения.

Теперь произведём обратное измерение коллекторного и эмиттерного перехода.

Во время измерения, на экране прибора высветится цифра «1», что в свою очередь означает, что при выбранном нами режиме измерения, падение напряжения отсутствует.

Точно также, можно проверить элемент, который находиться на электронной плате, от какого-либо устройства.

При этом во многих случаях можно обойтись и без выпаивания его из платы.

Бывают случаи, когда на впаянные элементы в схеме, оказывают большое влияние резисторы с малым сопротивлением.

Но такие схематические решения, встречаются очень редко. В таких случаях при измерении обратного коллекторного и эмиттерного перехода, значения на приборе будут низкие, и тогда нужно выпаивать элемент из печатной платы. Способ проверки работоспособности элемента с обратной проводимостью (P-N-P переход), точно такой же, только на базу элемента подключается минусовой щуп измерительного прибора.

Пошаговая инструкция проверки мультимером

Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.

Проверка мультимером NPN транзистора состоит из таких последовательных операций:

  1. Проверяем обратное сопротивление, для этого присоединяем «плюсовой» щуп прибора к его базе.
  2. Тестируется эмиттерный переход, для этого «минусовой» щуп подключаем к эмиттеру.
  3. Для проверки коллектора перемещаем на него «минусовой» щуп.

Результаты этих измерений должны показать сопротивление в пределах значения «1».

Для проверки прямого сопротивления меняем щупы местами:

  1. «Минусовой» щуп прибора присоединяем к базе.
  2. «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
  3. На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.

Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.

Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.

База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.

Основные технические характеристики

13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.

Предельные режимы эксплуатации

13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.

Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%

Электрические характеристики

Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.

Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.

Что такое NPN транзистор?

Транзисторы вытеснили электролампы, позволили уменьшить количество реле, переключателей в устройствах. Это полупроводниковые триоды — радиоэлектронные компоненты из полупроводников, стандартно имеют 3 вывода.

Транзисторы, предназначенные для управления током, то есть основным силовым фактором электросхем, именно его удар (не напряжения) несет опасность для человека.

Элемент способен контролировать чрезвычайно высокие величины в выходных цепях при подаче слабого входного сигнала. Транзисторы повышают, генерируют, коммутируют, преобразовывают электросигналы, это основа микроэлектроники, электроустройств.

Разновидности по принципу действия:

  • биполярный транзистор из 2 типов проводников, в основе функционирования – взаимодействие на кристалле соседних p-n участков. Состоят из эмиттера/коллектора/базы (далее, эти термины будем сокращать): на последнюю идет слабый ток, вызывающий модификацию сопротивления (дальше по тексту «сопр.») в линии, состоящей из первых 2 элементов. Таким образом, протекающая величина меняется, сторона ее однонаправленности (n-p-n или p-n-p) определяется характеристиками переходов (участков) в соответствии с полярностью подключения (обратно, прямо). Управление осуществляется модулированием тока на сегменте база/эмит., вывод последнего всегда общий для сигналов управления и выхода;
  • полевой. Тип проводника один — узкий канал, подпадающий под электрополе обособленного затворного прохода. Контроль основывается на модуляции количества Вольт между ним и истоком. А между последним и стоком течет электроток (2 рабочие контакты). Величина имеет силу, зависящую от сигналов, формируемых между затвором (контакт контроля) и одной из указанных частей. Есть изделия с p-n участком управления (рабочие контакты подключаются к p- или n-полупроводнику) или с обособленными затворами.

У полевиков есть варианты полярности, для управления требуется низкий вольтаж, из-за экономичности их ставят в радиосхемы с маломощными БП. Биполярные варианты активируются токами. В аналоговых сборках превалируют вторые (БТ, BJT), в цифровых (процессоры, компьютеры) — первые. Есть также гибриды — IGBT, применяются в силовых схемах.

Туннельные транзисторы

Одной из главных задач производителей полупроводниковых устройств является проектирование транзисторов, которые можно переключать малыми напряжениями. Решить её способны туннельные транзисторы. Такие устройства управляются с помощью квантового туннельного эффекта. Таким образом, при наложении внешнего напряжения переключение транзистора происходит быстрее, так как электроны с большей вероятностью преодолевают диэлектрический барьер. В результате устройству требуется в несколько раз меньшее напряжение для работы.

Разработкой туннельных транзисторов занимаются ученые из МФТИ и японского университета Тохоку. Они использовали двухслойный графен, чтобы создать устройство, которое работает в 10–100 раз быстрее кремниевых аналогов. По словам инженеров, их технология позволит спроектировать процессоры, которые будут в двадцать раз производительнее современных флагманских моделей.

/ фото PxHere PD

В разное время прототипы туннельных транзисторов реализовывались с использованием различных материалов — помимо графена, ими были нанотрубки и кремний. Однако технология до сих пор не покинула стены лабораторий, и о масштабном производстве устройств на её основе речи не идет.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: