Аналоги биполярного транзистора 2SС5586
Type | Mat | Struct | Pc | Vcb | Vce | Ic | Ft | Cc | Hfe | Caps |
2SC5586 | Si | NPN | 70,00 | 900,00 | 550,00 | 5,00 | 6,00 | 50,00 | 10,00 | TO3PF |
H05N50F | N | MOSFET | 38,00 | 500,00 | 30,00 | 5,00 | 150,00 | 60,00 | ||
H06N60F | N | MOSFET | 40,00 | 600,00 | 30,00 | 6,00 | 150,00 | 19,00 | ||
H07N60F | N | MOSFET | 40,00 | 600,00 | 30,00 | 7,00 | 150,00 | 19,00 | ||
H07N65F | N | MOSFET | 48,00 | 650,00 | 30,00 | 7,00 | 150,00 | 29,00 | ||
H10N60F | N | MOSFET | 50,00 | 600,00 | 30,00 | 10,00 | 150,00 | 26,00 | ||
H10N65F | N | MOSFET | 50,00 | 650,00 | 30,00 | 10,00 | 150,00 | 75,00 | ||
H12N60F | N | MOSFET | 50,00 | 600,00 | 30,00 | 12,00 | 150,00 | 50,00 | ||
H12N65F | N | MOSFET | 50,00 | 650,00 | 30,00 | 12,00 | 150,00 | 50,00 | ||
HIRF830F | N | MOSFET | 38,00 | 500,00 | 30,00 | 43589,00 | 150,00 | 46,00 | ||
HIRF840F | N | MOSFET | 38,00 | 500,00 | 30,00 | 8,00 | 150,00 | 23,00 | ||
IPA50R199CP | N | MOSFET | 139,00 | 500,00 | 17,00 | 34,00 | ||||
MTN12N65FP | N | MOSFET | 51,00 | 650,00 | 30,00 | 12,00 | 150,00 | 38,00 | 85,00 | |
MTN6N65FP | N | MOSFET | 54,00 | 650,00 | 30,00 | 6,00 | 150,00 | 13,00 | ||
MTN6N70FP | N | MOSFET | 54,00 | 700,00 | 30,00 | 6,00 | 150,00 | 13,00 | ||
MTN7N60FP | N | MOSFET | 44,00 | 600,00 | 30,00 | 7,00 | 150,00 | 37,00 | 40,00 | |
MTN7N65FP | N | MOSFET | 52,00 | 650,00 | 30,00 | 7,00 | 150,00 | 50,00 | ||
MTN8N50FP | N | MOSFET | 38.5 | 500,00 | 30,00 | 8,00 | 150,00 | 23,00 | ||
MTN8N60FP | N | MOSFET | 48,00 | 600,00 | 30,00 | 43592,00 | 150,00 | 37,00 | 40,00 | |
MTN8N65FP | N | MOSFET | 60,00 | 650,00 | 30,00 | 43592,00 | 150,00 | 70,00 | ||
MTN8N70FP | N | MOSFET | 60,00 | 700,00 | 30,00 | 43592,00 | 150,00 | 70,00 | ||
SIF10N60C | N | MOSFET | 156,00 | 600,00 | 20,00 | 10,00 | 150,00 | |||
SIF10N65C | N | MOSFET | 156,00 | 650,00 | 20,00 | 10,00 | 150,00 | |||
SIF10N70C | N | MOSFET | 157,00 | 700,00 | 20,00 | 10,00 | 150,00 | |||
SIF12N60C | N | MOSFET | 225,00 | 600,00 | 30,00 | 12,00 | 150,00 | |||
SIF12N65C | N | MOSFET | 225,00 | 650,00 | 30,00 | 12,00 | 150,00 | |||
SIF13N50C | N | MOSFET | 170,00 | 500,00 | 30,00 | 13,00 | 150,00 | |||
SIF18N65C | N | MOSFET | 65,00 | 650,00 | 30,00 | 18,00 | 150,00 | |||
SIF5N50C | N | MOSFET | 74,00 | 500,00 | 30,00 | 5,00 | 150,00 | |||
SIF7N60C | N | MOSFET | 147,00 | 600,00 | 30,00 | 7,00 | 150,00 | |||
SIF7N60D | N | MOSFET | 147,00 | 600,00 | 30,00 | 7,00 | 150,00 | |||
SIF7N65C | N | MOSFET | 142,00 | 650,00 | 30,00 | 7,00 | 150,00 | |||
SIF7N65D | N | MOSFET | 142,00 | 650,00 | 30,00 | 7,00 | 150,00 | |||
SIF7N70C | N | MOSFET | 147,00 | 700,00 | 30,00 | 7,00 | 150,00 | |||
SIF7N80C | N | MOSFET | 167,00 | 800,00 | 30,00 | 7,00 | 150,00 | |||
SIF8N50C | N | MOSFET | 125,00 | 500,00 | 30,00 | 8,00 | 150,00 | |||
SIHFI830G | N | MOSFET | 35,00 | 500,00 | 20,00 | 4,00 | 43468,00 | 150,00 | 38,00 | 16,00 |
SPA04N80C3 | N | MOSFET | 38,00 | 800,00 | 4,00 | 23,00 | ||||
SPA06N80C3 | N | MOSFET | 39,00 | 800,00 | 6,00 | 31,00 | ||||
STF12N50M2 | N | MOSFET | 85,00 | 500,00 | 25,00 | 4,00 | 10,00 | 150,00 | 15,00 | 43595,00 |
STF30NM50N | N | MOSFET | 40,00 | 500,00 | 25,00 | 4,00 | 27,00 | 150,00 | ||
STF8NM50N | N | MOSFET | 45,00 | 500,00 | 25,00 | 4,00 | 5,00 | 150,00 | ||
STP9NB50FP | N | MOSFET | 40,00 | 500,00 | 30,00 | 43712,00 | 150,00 | 11,00 |
Bipolar transistor, NPN, 900 V, 5 A, 70 W
Биполярный транзистор, NPN, 900 В, 5 А, 70 Вт
Структура транзистора C3866
Эмиттер — это самый тонкий слой транзистора C3866. Он содержит большое количество дополнительных примесей (обычно бора), которые являются ионизаторами и обеспечивают эмиттеру положительный заряд. Эмиттер обладает высокими проводящими свойствами и выпускает большое количество носителей заряда (электронов или дырок) в базу.
База находится между эмиттером и коллектором. Он обычно имеет меньшую концентрацию примесей по сравнению с эмиттером и имеет нейтральный или слабый электрический заряд. База выступает в качестве поглощающего слоя, контролирующего проток электронов или дырок от эмиттера к коллектору. В зависимости от базового заряда транзистор C3866 может быть p-n-p-типа или n-p-n-типа.
Коллектор — это самый толстый слой транзистора C3866. Он имеет высокую концентрацию примесей (обычно арсенида галлия), обеспечивая ему отрицательный заряд. Коллектор предназначен для сбора и протяжки носителей заряда, поступающих из базы.
Структура транзистора C3866 обеспечивает его функционирование как усилитель сигнала и ключевое устройство в электронных схемах. Он обладает высоким коэффициентом усиления и широким рабочим диапазоном частот, что делает его популярным компонентом в электронике.
Зачем нужна маркировка
Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.
Маркировка на практике
Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся
Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений
Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.
Разнообразные корпуса транзисторов.
Маркировка SMD компонентов
SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.
Код | Сопротивление |
101 | 100 Ом |
471 | 470 Ом |
102 | 1 кОм |
122 | 1.2 кОм |
103 | 10 кОм |
123 | 12 кОм |
104 | 100 кОм |
124 | 120 кОм |
474 | 470 кОм |
Маркировка импортных SMD
Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.
Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.
Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.
Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.
Подробное описание
- Тип полупроводникового материала: кремний.
- Тип транзистора: n-p-n.
- Максимальная рабочая температура: +150°C.
- Максимальное коллекторное напряжение: 60 Вольт.
- Максимальный коллекторный ток: 7 Ампер.
- Максимальная мощность потери: 15 Ватт.
- Корпус транзистора: TO-220AB.
- Величина hFE (коэффициент усиления по току коллектора): от 60 до 320.
- Быстродействие: высокоскоростной транзистор с малым временем нарастания и спада сигнала.
- Применение: транзистор C3866 может быть использован для усиления, коммутации и стабилизации сигналов в различных устройствах, включая аудиоусилители, блоки питания, импульсные источники, переключатели и другие электронные схемы.
Транзистор C3866 представляет собой надежное и эффективное устройство с широким спектром применения. Его особенности и характеристики делают его популярным выбором для различных электронных проектов.
Применение транзистора C3866
Основные области применения транзистора C3866:
- Усилительные устройства: благодаря своей высокой переключающей способности и мощности, транзистор C3866 может использоваться в устройствах с высокой акустической мощностью, таких как стереоусилители, ресиверы и громкоговорители.
- Источники питания: транзистор C3866 обладает низким сопротивлением включения и выключения, что делает его идеальным выбором для применения в источниках питания, где требуется быстрое регулирование напряжения и высокая стабильность.
- Преобразователи постоянного тока: благодаря своей высокой надежности и эффективности, транзистор C3866 может использоваться в преобразователях постоянного тока для стабилизации напряжения и поддержания постоянного тока в различных устройствах.
- Электромеханические устройства: транзистор C3866 может применяться в электромеханических устройствах, таких как роботы, автоматические системы и электронные замки, для управления двигателями и актуаторами.
Благодаря своим характеристикам и многофункциональности, транзистор C3866 является незаменимым компонентом в современной электронике. Его преимущества и широкий спектр применения делают его идеальным выбором для различных проектов и задач.
Основные технические характеристики
Обычно у транзисторов серии S8050 такие технические характеристики:
- Тип проводимости транзистора NPN;
- Тип корпуса ТО-92 или SOT-23;
- Максимально допустимый коллекторный ток (Maximum Collector Current) IK макс (Ic max) 0,7А или 700мА (mA), при температуре окружающей среды 25 градусов (С);
- Максимальное допустимое напряжение между коллектором и эмиттером (Collector-Emitter Voltage) UКЭ макс (VCE) не более 20 В (V);
- Максимальное допустимое напряжение между эмиттером и базой (Emitter-Base Voltage)UЭБ макс(VЕВО) не более 5 В (V);
- Максимальная мощность, рассеиваемая на коллекторе(Maximum Collector Dissipation) PK макс (PC ) 1 Ватт (Watt);
- Граничная частота передачи тока(Current Gain Bandw >
Внимание! Параметры транзистора S8050 у разных производителей могут незначительно отличатся друг от друга
Аналоги и описание
Комплементарной парой для него является S8550. Полные аналоги (не Российские) транзистора s8050 можно считать 9013, 9014 и 2N5551 их смело ставим взамен вышедшему из строя s8050.
- Максимально допустимый коллекторный ток составляет 700 мА (mA), поэтому можно управлять только нагрузками, которые находятся в пределах 0,7 А.;
- Максимальное напряжение, которое этот транзистор может пропустить через контакты коллектора и эмиттера, составляет 20 В (V), поэтому вы можете использовать его только в цепях, которые работают под напряжением 20 В(V);
- Нормальное значение коэффициента усиления по току транзистора равно 110 hFE, а максимальное значение 400 hFE;
- Максимальное значение усиления показывает максимальное усиление сигнала, которое Вы можете получить от транзистора в электронной схеме.
Применение
Транзисторы S8050 чаще всего применяются в качестве усилителя сигналов (обычно в усилителях класса B), двуконтактных схемах с комплементарным транзистором S8550, в качестве электронного ключа для небольших нагрузок, например:
Где и как мы можем использовать ? Транзистор S8050 это идеальный компонент для выполнения небольших и общих задач в электронных схемах. Вы можете использовать его в качестве переключателя в электронных цепях для включения нагрузок до 700 Ма (mA). 700 мА (mA) достаточно для работы с различными незначительными нагрузками. Его также используют в качестве усилителя на малых ступенях усиления или в качестве отдельного усилителя на малых сигналах.
Справка об аналогах биполярного низкочастотного npn транзистора MJE13009.
Эта страница содержит информацию об аналогах биполярного низкочастотного npn транзистора MJE13009 .
Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора.
Можно попробовать заменить транзистор MJE13009 транзистором 2SC2335;
транзистором 2SC3346; транзистором 2SC3306; транзистором 2SC2898; транзистором 2SC3257; транзистором BUL74A; транзистором BUW72; транзистором 2SC3346; транзистором 2SC3306; транзистором 2SC2898; транзистором 2SC3257;
Характеристики транзистора C3866 на русском языке
Основные характеристики транзистора C3866:
- Максимальное напряжение коллектор-эмиттер: 160 В
- Максимальный коллекторный ток: 4 А
- Максимальная мощность потери коллектора: 15 Вт
- Коэффициент усиления по току (hFE): 70-700
- Максимальная частота переключения (fT): 30 МГц
- Температурный диапазон: от -55°C до +150°C
Транзистор C3866 имеет три электродных вывода: эмиттер (E), базу (B) и коллектор (C). Он обычно упаковывается в привычном корпусе TO-220, что делает его удобным для монтажа на радиаторы для отвода тепла.
Этот транзистор отличается низким входным и выходным сопротивлением, что делает его подходящим для усилителей с высоким коэффициентом усиления и низким уровнем шума. Также он обладает высокой надежностью и теплостойкостью.
Важно отметить, что для успешного применения транзистора C3866 необходимо соблюдать рекомендации производителя по максимальным значениям напряжения и тока, а также обеспечивать надлежащее охлаждение для предотвращения перегрева. В заключение, транзистор C3866 представляет собой надежное и универсальное устройство, которое можно использовать в различных электронных схемах
Благодаря своим характеристикам, он обладает широким спектром применений и может быть полезен во многих электронных проектах
В заключение, транзистор C3866 представляет собой надежное и универсальное устройство, которое можно использовать в различных электронных схемах. Благодаря своим характеристикам, он обладает широким спектром применений и может быть полезен во многих электронных проектах.
Аналоги
Для замены могут подойти транзисторы кремниевые, со структрурой NPN, мезапланарные, предназначенные для применения в переключательных и импульсных устройствах аппаратуры широкого применения.
Отечественное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | UCE(sat) | ton / ts / tf | Корпус |
---|---|---|---|---|---|---|---|---|---|---|
2SC2625 | 80 | 450 | 400 | 7 | 10 | 150 | ≥ 10 | 1,2 | 1,0 / 2,5 / 1,0 | TO-3P |
КТ834А | 100 | 500 | 400 | 8 | 15 | 150 | 150 | 1,5 | — / — / 0,6 | ТО-3 |
КТ840А | 60 | 900 | 400 | 5 | 6 | 150 | 10 — 100 | 0,6 | 0,2 / 3,5 / 0,6 | ТО-3 |
КТ840Б | 750 | 350 | ||||||||
КТ840В | 860 | 375 | ||||||||
КТ847 | 125 | 650 | 650 | 8 | 15 | 200 | 8 — 25 | 1,5 | — / 3,0 / 1,5 | ТО-3 |
2Т856А | 125 | 950 | — | 5 | 10 | — | 10 — 60 | 1,5 | — / — / 0,5 | — |
2Т856Б | 750 | |||||||||
2Т856В | 550 | |||||||||
2Т856Г | 850 | |||||||||
КТ862В | 50 | 600 | 350 | 5 | 10 | 150 | 12 — 50 | 1,5 | 0,5 / 2,0 / 0,5 | — |
КТ862Г | 400 | |||||||||
2Т862В | 50 | 600 | 350 | 5 | 10 | 150 | 12 — 50 | 1,5 | 0,5 / 2,0 / 0,5 | — |
2Т862Г | 400 | |||||||||
КТ872А | 100 | — | 700 | 6 | 8 | 150 | 6 | 1 | — / 6,7 / 0,8 | ТО-218 |
КТ872В | 600 | |||||||||
КТ878А | 100 | — | 900 | 6 | 25 | 150 | 12 — 50 | 1,5 | — / 3,0 / — | ТО-3 |
КТ878В | 600 | |||||||||
КТ890А/Б/В | 120 | 350 | 350 | 5 | 20 | 150 | 300 | 1,6 | — | ТО-218 |
Зарубежное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | RƟJC | UCE(sat) | ton / ts / tf | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|
2SC2625 | 80 | 450 | 400 | 7 | 10 | 150 | > 10 | 1,56 | 1,2 | 1,0 / 2,5 / 1,0 | TO-3P |
2SC2626 | 80 | 450 | 300 | 7 | 15 | 150 | > 10 | 1,55 | 1,2 | 0,8 / 2,0 / 0,8 | TO-218 |
2SC3318 | 80 | 500 | 400 | 7 | 10 | 150 | > 45 | 1,55 | 1 | 0,5 / 1,5 / 0,15 | TO-218 |
2SC3320 | 80 | 500 | 400 | 7 | 15 | 150 | > 30 | — | 1 | 0,5 / 1,5 / 0,15 | TO-218 |
2SC3847 | 85 | 1200 | 800 | 7 | 10 | 150 | > 100 | — | 1,5 | 0,5 / 3,5 / 0,3 | TO-218 |
2SC4138 | 80 | 500 | 400 | 10 | 10 | 150 | > 45 | — | 0,5 | 1,0 / 3,0 / 0,5 | TO-218 |
2SC4275 | 80 | 500 | 400 | 10 | 10 | 150 | > 120 | 1,56 | 0,8 | 1,0 / 2,5 / 0,5 | TO-218 |
2SC4276 | 80 | 500 | 400 | 10 | 15 | 150 | > 30 | 1,56 | 0,8 | 1,0 / 2,5 / 0,5 | TO-218 |
2SC4298 | 80 | 500 | 400 | 10 | 15 | 150 | > 55 | — | 1,3 | 1,0 / 3,0 / 0,5 | TO-218 |
2SC4509 | 80 | 500 | 400 | 10 | 10 | 150 | > 10 | 1,56 | 0,8 | 1,0 / 2,5 / 0,5 | TO-3PML |
2SC4510 | 80 | 500 | 400 | 10 | 15 | 150 | > 25 | 1,56 | 0,8 | 1,0 / 2,5 / 0,5 | TO-3PML |
2SC4557 | 80 | 900 | 550 | 7 | 10 | 150 | > 10 | — | 0,5 | 1,0 / 5,0 / 0,5 | TO-3PML |
2SC5024R/O/Y | 90 | 800 | 500 | 7 | 10 | 150 | 15 — 35 | — | 1 | 0,5 / 3,0 / 0,3 | TO-218 |
2SC5352 | 80 | 600 | 400 | 7 | 10 | 150 | > 20 | — | 1 | 0,5 / 2,0 / 0,3 | TO-3PN |
2SC5924 | 90 | 900 | 600 | — | 14 | > 10 | — | — | — / — / — | TO-3PF | |
KSC5024R/O/Y | 90 | 800 | 500 | 7 | 10 | 150 | 15 — 35 | — | 1 | 1,0 / 2,5 / 0,5 | TO-3P |
MJE13009K/P | 80 | 700 | 400 | 9 | 12 | 150 | > 40 | 1,55 | 1,5 | 1,0 / 3,0 / 0,7 | TO-3P TO-220 |
MJE13011 | 80 | 450 | 400 | 7 | 10 | 150 | > 10 | — | 1,5 | 1,0 / 2,0 / 1,0 | TO-220/F TO-3P |
T25 | 80 | 450 | 400 | 7 | 10 | — | > 30 | — | — | — / — / — | TO-3PN |
TT2148 | 80 | 500 | 400 | 7 | 12 | 150 | > 20 | — | 0,8 | 0,5 / 2,5 / 0,3 | TO-3PB |
Примечание: данные в таблицах взяты из даташит компаний-производителей.
Основные характеристики и параметры транзисторов
Классификация транзисторов. Проводимость, усиление, параметры, определяющие мощность, допустимое напряжение, частотные и шумовые свойства транзистора.
Транзистор, в общем понимании этого слова – это полупроводниковый прибор, как правило, с тремя выводами, способный усиливать поступающий на него сигнал. Выполняя функции усиления, преобразования, генерирования, а также коммутации сигналов в электрических цепях, в данный момент транзистор является основой подавляющего большинства электронных устройств и интегральных микросхем.
На принципиальных схемах транзистор обычно обозначается латинскими буквами «VT» или «Q» с добавлением позиционного номера (например, VT12 или Q12).
В отечественной документации прошлого века применялись обозначения «Т», «ПП» или «ПТ». Преобладающее применение в промышленных и радиолюбительских конструкциях находят два типа транзисторов – биполярные и полевые. Какими они бывают?
ОСНОВНАЯ КЛАССИФИКАЦИЯ, ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ.
Основная классификация, определяющая область применения транзисторов, ведётся по: исходному материалу, на основе которого они сделаны, структуре проводимости, максимально допустимому напряжению, максимальной мощности, рассеиваемой на коллекторе, частотным свойствам, шумовым характеристикам, крутизне передаточной характеристики (для полевых) или статическому коэффициенту передачи тока (для биполярных транзисторов) . Рассмотрим перечисленные пункты классификации более детально.
По исходному полупроводниковому материалу транзисторы классифицируются на: — германиевые (в настоящее время не производятся); — кремниевые (наиболее широко представленный класс); — из арсенида галлия (в основном СВЧ транзисторы) и др.
По структуре транзисторы классифицируются на: — p-n-p структуры – биполярные транзисторы «прямой проводимости»; — n-p-n структуры – биполярные транзисторы «обратной проводимости»; — p-типа – полевые транзисторы с «p-типом проводимости»; — n-типа – полевые транзисторы с «n-типом проводимости». В свою очередь, полевые транзисторы подразделяются на приборы с управляющим p-n-переходом (JFET-транзисторы) и транзисторы с изолированным затвором (МДП или МОП-транзисторы).
По параметру мощности транзисторы делятся на: — транзисторы малой мощности (условно Рmах — транзисторы средней мощности (0,3 — мощные транзисторы (Рmах >1,5 Вт). Также косвенным показателем мощности транзистора является параметр максимально допустимого тока коллектора (Iк_max).
По параметру максимально допустимого напряжения Uкэ или Uси транзисторы делятся на: — транзисторы общего применения (условно Uкэ_mах — высоковольтные транзисторы (Uкэ_mах > 100 В). У современных биполярных и полевых транзисторов параметр Uкэ_mах (Uси_mах) может достигать нескольких тысяч вольт!
По частотным характеристикам транзисторы делятся на: — низкочастотные транзисторы (условно Fгр — среднечастотные транзисторы (3 — высокочастотные транзисторы (30 — сверхвысокочастотные транзисторы (Fгр > 300 МГц); Основным параметром, характеризующим быстродействия транзистора, является граничная частота коэффициента передачи тока (Fгр). Косвенным – входная и выходная ёмкости. Для транзисторов, разработанных для использования в ключевых схемах, также может указываться параметр задержки переключения (tr и ts).
По шумовым характеристикам транзисторы делятся на: — транзисторы с ненормированным коэффициентом шума; — транзисторы с нормированным коэффициентом шума (Кш).
Коэффициент передачи тока (h21 – для биполярного транзистора) и крутизна передаточной характеристики (S – для полевого) являются одними из основных параметров полупроводника. От него зависят как качественные показатели транзисторного усилительного каскада, так и требования, предъявляемые к предыдущим и последующим каскадам.
Однако давайте будем считать эту статью вводной, а углубляться и подробно рассуждать о влиянии тех или иных параметров на работу и поведение биполярного или полевого транзистора будем на следующих страницах. Полный перечень статей, посвящённых описанию работы транзистора, а также расчётам каскадов на полевых и биполярных полупроводниках, приведён в рубрике «Это тоже может быть интересно».
Функция транзистора C3866
- Усиление сигналов: C3866 обладает высоким коэффициентом усиления, благодаря которому может усиливать слабые входные сигналы до достаточного уровня для дальнейшей обработки.
- Контроль тока: Транзистор C3866 позволяет контролировать ток в схеме, что позволяет регулировать уровень сигнала и его усиление.
- Переключение: C3866 может использоваться для переключения сигналов в различных цепях и схемах, позволяя создавать логические элементы и управлять рабочим режимом устройств.
- Стабилизация: Транзистор C3866 также может использоваться в схемах стабилизации, где он помогает поддерживать постоянный уровень напряжения или тока в электрической цепи.
Таким образом, функция транзистора C3866 состоит в усилении сигналов, контроле тока, переключении сигналов и стабилизации напряжения или тока в электрических цепях и схемах. Это позволяет использовать транзистор C3866 в широком спектре приложений в области радиоэлектроники.
Какие бывают стандарты маркировки
Маркировка, которая наносится на корпус SMD-элементов, как правило, отличается от их фирменных названий. Причина банальная – нехватка места из-за миниатюрности корпуса. Проблема особенно актуальна для ЭРЭ, которые размещаются в корпусах с шестью и менее выводами.
Это миниатюрные диоды, транзисторы, стабилизаторы напряжения, усилители и т.д. Для разгадки “что есть что” требуется проводить настоящую экспертизу, ведь по одному маркировочному коду без дополнительной информации очень трудно идентифицировать тип ЭРЭ. С момента появления первых SMD-приборов прошло более 20 лет.
Несмотря на все попытки стандартизации, фирмы-изготовители до сих пор упорно изобретают все новые разновидности SMD-корпусов и бессистемно присваивают своим элементам маркировочные коды.
Полбеды, что наносимые символы даже близко не напоминают наименование ЭРЭ, – хуже всего, что имеются случаи “плагиата”, когда одинаковые коды присваивают функционально разным приборам разных фирм.
Тип | Наименование ЭРЭ | Зарубежное название |
A1 | Полевой N-канальный транзистор | Feld-Effect Transistor (FET), N-Channel |
A2 | Двухзатворный N-канальный полевой транзистор | Tetrode, Dual-Gate |
A3 | Набор N-канальных полевых транзисторов | Double MOSFET Transistor Array |
B1 | Полевой Р-канальный транзистор | MOS, GaAs FET, P-Channel |
D1 | Один диод широкого применения | General Purpose, Switching, PIN-Diode |
D2 | Два диода широкого применения | Dual Diodes |
D3 | Три диода широкого применения | Triple Diodes |
D4 | Четыре диода широкого применения | Bridge, Quad Diodes |
E1 | Один импульсный диод | Rectifier Diode |
E2 | Два импульсных диода | Dual |
E3 | Три импульсных диода | Triple |
E4 | Четыре импульсных диода | Quad |
F1 | Один диод Шоттки | AF-, RF-Schottky Diode, Schottky Detector Diode |
F2 | Два диода Шоттки | Dual |
F3 | Три диода Шоттки | Tripple |
F4 | Четыре диода Шоттки | Quad |
K1 | “Цифровой” транзистор NPN | Digital Transistor NPN |
K2 | Набор “цифровых” транзисторов NPN | Double Digital NPN Transistor Array |
L1 | “Цифровой” транзистор PNP | Digital Transistor PNP |
L2 | Набор “цифровых” транзисторов PNP | Double Digital PNP Transistor Array |
L3 | Набор “цифровых” транзисторов | PNP, NPN | Double Digital PNP-NPN Transistor Array |
N1 | Биполярный НЧ транзистор NPN (f < 400 МГц) | AF-Transistor NPN |
N2 | Биполярный ВЧ транзистор NPN (f > 400 МГц) | RF-Transistor NPN |
N3 | Высоковольтный транзистор NPN (U > 150 В) | High-Voltage Transistor NPN |
N4 | “Супербета” транзистор NPN (г“21э > 1000) | Darlington Transistor NPN |
N5 | Набор транзисторов NPN | Double Transistor Array NPN |
N6 | Малошумящий транзистор NPN | Low-Noise Transistor NPN |
01 | Операционный усилитель | Single Operational Amplifier |
02 | Компаратор | Single Differential Comparator |
P1 | Биполярный НЧ транзистор PNP (f < 400 МГц) | AF-Transistor PNP |
P2 | Биполярный ВЧ транзистор PNP (f > 400 МГц) | RF-Transistor PNP |
P3 | Высоковольтный транзистор PNP (U > 150 В) | High-Voltage Transisnor PNP |
P4 | “Супербета” транзистор PNP (п21э > 1000) | Darlington Transistor PNP |
P5 | Набор транзисторов PNP | Double Transistor Array PNP |
P6 | Набор транзисторов PNP, NPN | Double Transistor Array PNP-NPN |
S1 | Один сапрессор | Transient Voltage Suppressor (TVS) |
S2 | Два сапрессора | Dual |
T1 | Источник опорного напряжения | “Bandgap”, 3-Terminal Voltage Reference |
T2 | Стабилизатор напряжения | Voltage Regulator |
T3 | Детектор напряжения | Voltage Detector |
U1 | Усилитель на полевых транзисторах | GaAs Microwave Monolithic Integrated Circuit (MMIC) |
U2 | Усилитель биполярный NPN | Si-MMIC NPN, Amplifier |
U3 | Усилитель биполярный PNP | Si-MMIC PNP, Amplifier |
V1 | Один варикап (варактор) | Tuning Diode, Varactor |
V2 | Два варикапа (варактора) | Dual |
Z1 | Один стабилитрон | Zener Diode |
Заключение
Информация о маркировочных кодах, содержащаяся в литературе, требует критического подхода и осмысления. К сожалению, красиво оформленный каталог с безукоризненной полиграфией не гарантируют от опечаток, ошибок, разночтений и противоречий, поэтому исходите из данных, что приведены в справочнике о маркировке радиоэлементов.
В заключение хотелось бы поблагодарить источники, которые были использованы для подбора материала к данной статье:
www.mp16.ru
www.rudatasheet.ru
www.texnic.ru
www.solo-project.com
www.ra4a.narod.ru
Предыдущая
ПолупроводникиЧто такое биполярный транзистор
Следующая
ПолупроводникиSMD транзисторы