Транзистор h945

Маркировка smd элементов

Биполярный транзистор

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Основные особенности транзистора Дарлингтона

Основное достоинство составного транзистора это большой коэффициент усиления по току.

Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h21). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.

Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости. Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости: p-n-p и n-p-n. Вот пример составного транзистора по схеме Шиклаи, который работает как транзистор с n-p-n проводимостью, хотя и состоит из двух различной структуры.

схема Шиклаи

К недостаткам составных транзисторов следует отнести невысокое быстродействие, поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.

Хорошо зарекомендовал себя для работы в электронных схемах зажигания мощный n-p-n транзистор Дарлингтона BU931.

Основные электрические параметры:

  • Напряжение коллектор – эмиттер 500 V;

  • Напряжение эмиттер – база 5 V;

  • Ток коллектора – 15 А;

  • Ток коллектора максимальный – 30 А;

  • Мощность рассеивания при 250С – 135 W;

  • Температура кристалла (перехода) – 1750С.

На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.

Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру n-p-n, а TIP125, TIP126, TIP127 — p-n-p.

Также на принципиальных схемах можно встретить и вот такое обозначение.

Транзистор КТ375 — DataSheet

Перейти к содержимому

Описание

Транзисторы кремниевые эпитаксиально-планарные n-p-n универсальные высокочастотные маломощные. Предназначены для работы в переключательных и усилительных схемах высокой частоты. Выпускаются в пластмассовом корпусе с гибкими выводами.

Параметры транзистора КТ375
Параметр Обозначение Маркировка Условия Значение Ед. изм.
Аналог КТ375А BCW88A, 2N3903, 2N560 *1, 2N2520 *1, BCY65EDP *1, BCY65EPDL *1, BCY65EPDM *1
КТ375Б BSX80, 2N3904, PET8006 *1, PET8005 *1, 2SC460A, MPS9624 *2, CX917 *2, KTC9016 *2, PE108 *2, MPS8001 *2, BF254, BSX66 *3, 2N5223 *2, BFY37 *3
Структура  — n-p-n
Максимально допустимая постоянная рассеиваемая мощность коллектора PK max,P*K, τ max,P**K, и max КТ375А 200(400**) мВт
КТ375Б 200(400**)
Граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером fгр, f*h31б, f**h31э, f***max КТ375А ≥250 МГц
КТ375Б ≥250
Пробивное напряжение коллектор-база при заданном обратном токе коллектора и разомкнутой цепи эмиттера UКБО проб. , U*КЭR проб., U**КЭО проб. КТ375А 60 В
КТ375Б 30
Пробивное напряжение эмиттер-база при заданном обратном токе эмиттера и разомкнутой цепи коллектора UЭБО проб.,  КТ375А 5 В
КТ375Б 5
Максимально допустимый постоянный ток коллектора IK max, I*К , и max КТ375А 100(200*) мА
КТ375Б 100(200*)
Обратный ток коллектора — ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера IКБО, I*КЭR, I**КЭO КТ375А 60 В ≤1 мкА
КТ375Б 30 В ≤1
Статический коэффициент передачи тока транзистора в режиме малого сигнала для схем с общим эмиттером h21э,  h*21Э КТ375А 2 В; 20 мА 10…100*
КТ375Б 2 В; 20 мА 50…280*
Емкость коллекторного перехода cк,  с*12э КТ375А 10 В ≤5 пФ
КТ375Б 10 В ≤5
Сопротивление насыщения между коллектором и эмиттером  rКЭ нас,  r*БЭ нас, К**у. р. КТ375А ≤40 Ом, дБ
КТ375Б ≤40
Коэффициент шума транзистора Кш, r*b, P**вых КТ375А Дб, Ом, Вт
КТ375Б
Постоянная времени цепи обратной связи на высокой частоте τк, t*рас,  t**выкл,  t***пк(нс) КТ375А ≤300 пс
КТ375Б ≤300

Описание значений со звездочками(*,**,***) смотрите в таблице параметров биполярных транзисторов.

*1 — аналог по электрическим параметрам, тип корпуса отличается.

*2 — функциональная замена, тип корпуса аналогичен.

*3 — функциональная замена, тип корпуса отличается.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Цветовая маркировка диодов в корпусах SOD-80

Корпус SOD-80, известный также как MELF, представляет из себя маленький стеклянный цилиндр с металлическими выводами. Примеры маркировки диодов.

Маркировка 2Y4 к 75Y (E24 серия) BZV49 1W кремниевый стабилитрон (2.4 – 75V) Маркировка C2V4 к C75 (E24 серия) BZV55 500mW кремниевый стабилитрон (2.4 – 75V)

Катодный вывод помечен цветным кольцом.

Маркировка приборов цветными кольцами.

Вывод катода Прибор
Черный (Black) BAS32, BAS45, BAV105 LL4148, 50, 51,53, LL4448 BB241,BB249
Черный и кочичневый (Black Brown) LL4148, LL914
Черный и оранжевый (Black Orange) LL4150, BB219
Коричневый и зеленый (Brown Green) LL300
Коричневый и черный (Brown Black) LL4448
Красный (Red) BA682
Красный и оранжевый (Red Orange) BA683
Красный и зеленый (Red Green) BA423L
Красный и белый (Red White) LL600
Оранжевый и желтый (Orange Yellow) LL3595
Желтый (Yellow) BZV55,BZV80,BZV81 series zeners
Зеленый (Green) BAV105, BB240
Зеленый и черный (Green Black) BAV100
Зеленый и кочичневый (Green Brown) BAV101
Зеленый и красный (Green Red) BAV102
Зеленыый и оранжевый (Green Orange) BAV103
Серый (Gray) BAS81, 82, 83, 85, 86
Белый (White) BB219
Белый и зеленый (White Green) BB215

KTC3875 Datasheet (PDF)

..1. ktc3875.pdf Size:590K _secos

KTC3875 0.15A , 60V NPN Plastic Encapsulated Transistor Elektronische Bauelemente RoHS Compliant Product A suffix of -C specifies halogen & lead-free SOT-23 FEATURES High hFE AL Low noise 33 Complementary to KTA1504 Top ViewC B11 2CLASSIFICATION OF hFE 2K EProduct-Rank KTC3875-O KTC3875-Y KTC3875-GR KTC3875-BL DRange 70~140 120~240 200~400 350~

..2. ktc3875.pdf Size:781K _htsemi

KTC3875TRANSISTOR (NPN) SOT-23 FEATURES High hFE Low noise 1. BASE Complementary to KTA1504 2. EMITTER 3. COLLECTOR MAXIMUM RATINGS (TA=25 unless otherwise noted) Symbol Parameter Value UnitsVCBO Collector-Base Voltage 60 VVCEO Collector-Emitter Voltage 50 VVEBO Emitter-Base Voltage 5 V IC Collector Current -Continuous 150 mA PC Collector Power Dissip

..3. ktc3875.pdf Size:188K _lge

KTC3875 SOT-23 Transistor(NPN)SOT-231. BASE 2. EMITTER 3. COLLECTOR FeaturesHigh hFE: hFE=70-700 Low noise : NF=1dB(Typ),10dB(Max) Complementary to KTA1504 Dimensions in inches and (millimeters)MAXIMUM RATINGS (TA=25 unless otherwise noted) Symbol Parameter Value UnitsVCBO Collector-Base Voltage 60 VVCEO Collector-Emitter Voltage 50 VVEBO Emitter-Base V

..4. ktc3875.pdf Size:476K _wietron

KTC3875COLLECTORPlastic-Encapsulate Transistors3NPN Silicon 1BASE2SOT-23EMITTER(Ta=25 C)MAXIMUM RATINGSRating Symbol ValueUnitCollector-Emitter Voltage VCEO 50 VdcCollector-Base Voltage VCBO60 VdcEmitter-Base Voltage VEBO5.0 VdcCollector Current -Continuous ICmAdc150THERMAL CHARACTERISTICSCharacteristics Symbol ValueUnit(1)Total Device Dissi

..5. ktc3875.pdf Size:235K _shenzhen

Shenzhen Tuofeng Semiconductor Technology Co., Ltd SOT-23 Plastic-Encapsulate Transistors SOT-23 KTC3875 TRANSISTOR (NPN) FEATURES High hFE 1. BASE 2. EMITTER Low noise 3. COLLECTOR Complementary to KTA1504 MAXIMUM RATINGS (TA=25 unless otherwise noted) Symbol Parameter Value UnitsVCBO Collector-Base Voltage 60 VVCEO Collector-Emitter Voltage 50 VVEB

..6. ktc3875.pdf Size:996K _kexin

SMD Type TransistorsNPN TransistorsKTC3875SOT-23Unit: mm+0.12.9-0.1+0.10.4 -0.13 Features High hFE Low noise1 2+0.1+0.05 Complementary to KTA1504 0.95 -0.1 0.1 -0.011.9+0.1-0.11.Base2.Emitter3.collector Absolute Maximum Ratings Ta = 25Parameter Symbol Rating Unit Collector — Base Voltage VCBO 60 Collector — Emitter Voltage V

0.1. ktc3875-gr-y.pdf Size:785K _mcc

MCCMicro Commercial Components TMKTC3875-Y20736 Marilla Street ChatsworthMicro Commercial ComponentsCA 91311KTC3875-GRPhone: (818) 701-4933Fax: (818) 701-4939Features High hFE and Low NoiseEpitaxial Planar Complementary to KTA1504 Lead Free Finish/Rohs Compliant («P»Suffix designates NPN Transistors RoHS Compliant. See ordering information) Ha

0.2. ktc3875s.pdf Size:94K _kec

SEMICONDUCTOR KTC3875STECHNICAL DATA EPITAXIAL PLANAR NPN TRANSISTORGENERAL PURPOSE APPLICATION.SWITCHING APPLICATION. EL B LFEATURESDIM MILLIMETERSExcellent hFE Linearity_+2.93 0.20AB 1.30+0.20/-0.15: hFE(0.1mA)/hFE(2mA)=0.95(Typ.).C 1.30 MAX2High hFE : hFE=70 700. 3 D 0.45+0.15/-0.05E 2.40+0.30/-0.20Low Noise : NF=1dB(Typ.), 10dB(Max.).1G 1.90H 0.95

 0.3. ktc3875lt1.pdf Size:265K _china

SEMICONDUCTOR KTC3875LT1 Shandong Yiguang Electronic Joint stock Co., Ltd TECHNICAL DATA NPN EPITAXIAL SILICON TRANSISTOR General purpose application Package:SOT-23 * Complement to KTA1504LT1 * Collector Current :Ic=150mA * low noise:NF=10db(max) ABSOLUTE MAXIMUM RATINGS at Ta=25 Characteristic Symbol Rating UnitCollector-Base Voltage Vcbo 60 V Collector-Emitter Voltage

Другие транзисторы… KTC3228
, KTC3229
, KTC3230
, KTC3231
, KTC3265
, KTC3295
, KTC3400
, KTC3467
, , KTC3876
, KTC3878
, KTC3879
, KTC3880
, KTC3881
, KTC3882
, KTC3883
, KTC3911
.

Маркировка SMD-компонентов

Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали. 

Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку. 

Как собрать корпус SOT23 собственноручно

Приготовьте 3 куска монтажного провода подходящей длины, желательно, МГТФ. Из них получатся выводы корпуса.

Для защиты сделайте небольшую зачистку на пару миллиметров со стороны, которая припаивается к корпусу.

Замкните концы кусочков провода на участке, который впаивают в плату и зафиксируйте, чтобы уравнять потенциалы.

С помощью тонкого пинцета сделайте из пластика корпус, и зажмите его так:

Наденьте на паяльник так называемое игольчатое жало, оно, как правило, есть в паяльных станциях.

Установите на станции минимальную температуру, чтобы паять только припой. Ее можно определить только экспериментально.

Возьмите кусок провода в одну руку, паяльник — в другую. Можно паять стандартным припоем из свинца. Ни в коем случае нельзя перегревать контакты корпуса, а контакты паяльника — распаяйте и подпаяйте провода для выводов. Они должны быть уложены в виду пучка.

Припаивайте провода в определенном порядке, начиная с истока, и заканчивая затвором.

Не прикасайтесь к корпусу руками, трогать можно только паяльник и провода. При необходимости поправьте с помощью пинцета положение корпуса.

Готово! Вы не просто собрали корпус, а теперь он выводной. Его можно использовать, как все остальные транзисторы МОП.

Виды записи

Производители транзисторов применяют два основных типа шифрования – это цветовая и кодовая маркировки. Однако ни один, ни другой не имеют единых стандартов. Каждый завод, производящий полупроводниковые приборы (транзисторы, диоды, стабилитроны и т. д.), принимает свои кодовые и цветовые обозначения. Можно встретить транзисторы одной группы и типа, изготовленные разными заводами, и маркированы они будут по-разному. Или наоборот: элементы будут различными, а обозначения на них – идентичными. В таких случаях различать их можно только по дополнительным признакам. Например, по длине выводов эмиттера и коллектора либо по окраске противоположной (или торцевой) поверхности. Маркировка полевых транзисторов ничем не отличается от меток на других приборах. Такая же ситуация и с полупроводниковыми элементами зарубежного производства: каждым заводом-изготовителем применяются свои типы обозначений.

Datasheet Download — Galaxy Microelectronics

Номер произв KTC3875
Описание NPN Silicon Epitaxial Planar Transistor
Производители Galaxy Microelectronics
логотип  

1Page

No Preview Available !

Production specification
NPN Silicon Epitaxial Planar Transistor
FEATURES

z Complementary To KTA1504.

z Excellent HFE Linearity.

z Low noise.

Pb
Lead-free
KTC3875
APPLICATIONS

z General purpose application, switching application.

ORDERING INFORMATION
Type No.
Marking
KTC3875
ALO/ALY/ALG/ALL
SOT-23
Package Code
SOT-23

MAXIMUM RATING @ Ta=25℃ unless otherwise specified

Symbol
Parameter
Value

VCBO

Collector-Base Voltage
60

VCEO

Collector-Emitter Voltage
50

VEBO

Emitter-Base Voltage
5

IC Collector Current -Continuous

150

IB Base Current

30

PC Collector Power Dissipation

150

Tj,Tstg

Junction and Storage Temperature
-55 to +150
Units
V
V
V
mA
mA
mW

C056
Rev.A
www.gmicroelec.com
1

No Preview Available !

Production specification
NPN Silicon Epitaxial Planar Transistor
KTC3875

ELECTRICAL CHARACTERISTICS @ Ta=25℃ unless otherwise specified

Parameter
Symbol Test conditions

MIN TYP MAX UNIT

Collector-base breakdown voltage V(BR)CBO IC=100μA,IE=0

60
V

Collector-emitter breakdown voltage V(BR)CEO IC=1mA,IB=0

50
V
Emitter-base breakdown voltage

V(BR)EBO IE=100μA,IC=0

5
V
Collector cut-off current
Emitter cut-off current

ICBO VCB=60V,IE=0

IEBO VEB=5V,IC=0

0.1 μA

0.1 μA

DC current gain

hFE VCE=6V,IC=2mA

70
700

Collector-emitter saturation voltage VCE(sat) IC=100mA, IB=10mA

0.1 0.25 V
Transition frequency
Collector output capacitance
Noise figure

fT

VCE=10V, IC= 1mA

80
MHz

Cob VCB=10V,IE=0,f=1MHz

NF

VCE=6V,IC=0.1mA,

F=1KHz,Rg=10KΩ

2.0 3.5 pF
1.0 10 dB

CLASSIFICATION OF hFE

Rank
Range
Marking
O
70-140
ALO
Y
120-240
ALY
GR
200-400
ALG
BL
350-700
ALL
C056
Rev.A
www.gmicroelec.com
2

No Preview Available !

Production specification
NPN Silicon Epitaxial Planar Transistor
KTC3875

TYPICAL CHARACTERISTICS @ Ta=25℃ unless otherwise specified

C056
Rev.A
www.gmicroelec.com
3

Всего страниц 4 Pages
Скачать PDF

Полевые SMD транзисторы

Маркировка Тип прибора Маркировка Тип прибора
6A MMBF4416 C92 SST4392
6B MMBF5484 C93 SST4393
6C MMBFU310 H16 SST4416
6D MMBF5457 I08 SST108
6E MMBF5460 I09 SST109
6F MMBF4860 I10 SST110
6G MMBF4393 M4 BSR56
6H MMBF5486 M5 BSR57
6J MMBF4391 M6 BSR58
6K MMBF4932 P01 SST201
6L MMBF5459 P02 SST202
6T MMBFJ310 P03 SST203
6W MMBFJ175 P04 SST204
6Y MMBFJ177 S14 SST5114
B08 SST6908 S15 SST5115
B09 SST6909 S16 SST5116
B10 SST6910 S70 SST270
C11 SST111 S71 SST271
C12 SST112 S74 SST174
C13 SST113 S75 SST175
C41 SST4091 S76 SST176
C42 SST4092 S77 SST177
C43 SST4093 TV MMBF112
C59 SST4859 Z08 SST308
C60 SST4860 Z09 SST309
C61 SST4861 Z10 SST310
C91 SST4391

А это пример n-p-n и p-n-n биполярных транзисторов (sot-23, sot-323) с типовым расположением выводов:

Технические характеристики

Серию КТ825 относят к полупроводниковым триодам с p-n-p-проводимостью. Но на самом деле они представляют собой устройства состоящее из двух таких структур, собранных в едином корпусе по схеме Дарлингтона. В СССР их ещё называли — составными.

Максимальные эксплуатационные значения

КТ825Г является лучшим по параметрам транзистором в своей серии, если не рассматривать его аналог 2Т825. Он имеет наибольшие значения предельно допустимых режимов эксплуатации среди «собратьев». Рассмотрим их поподробнее:

  • максимальное постоянное напряжение: К-Э — до 90 В; Б-Э – до 5 В;
  • коллекторный ток: постоянный от 20 А; импульсный до 40 А;
  • рассеиваемая мощность на коллекторе: до 125 Вт (с радиатором); до 3 Вт (без теплоотвода);  у кристалла не более 40 Вт;
  • температура: p-n-перехода до +150°С; окружающей среды от -40 до +100 °C.

Электрические характеристики

Электрические параметры КТ825Г тоже неплохие, по сравнению с другими серии. Согласно данным из даташит, он имеет лучшие показатели статического коэффициента передачи тока в схеме с общим эмиттером (H21э) от 600 до 25000 и пробивное напряжение К-Э до 90В. Такие величины H21э обусловлены его составной структурой. Эти и другие характеристики устройства представлены в таблице ниже, исходя из условий его работы указанных в отдельном столбце.

Комплементарная пара

В качестве комплементарной пары во многих технических решениях используется составной КТ827А, имеющий NPN-проводимость.

Советуем Вам проверить информацию о содержании драгоценных металлов в КТ825Г, так как некоторые модели могут иметь ценность даже в нерабочем состоянии, особенно продукция старого образца.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции. Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В). Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:

Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В. При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение. При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43

При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой. Проводя настройку прибора, подключите резистор вместо smd VDX

Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4 Вот так можно выяснить, стабилитрон у вас или обычный диод

Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4 Вот так можно выяснить, стабилитрон у вас или обычный диод.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются

В этом деле очень важно идти в ногу со временем. Успехов вам!. Источники

Источники

  • https://habr.com/ru/post/133136/
  • https://principraboty.ru/princip-raboty-tranzistora/
  • https://odinelectric.ru/knowledgebase/kak-rabotaet-tranzistor-i-gde-ispolzuetsya
  • https://rusenergetics.ru/oborudovanie/skhema-tranzistora
  • https://RadioStorage.net/1670-tranzistory-osnovnye-parametry-i-harakteristiki-markirovka-tranzistorov.html
  • https://tokar.guru/hochu-vse-znat/tranzistor-vidy-primenenie-i-principy-raboty.html
  • https://www.RusElectronic.com/chitaem-elektricheskie-skhemy-s-tranzistorami/

Заключение

Информация о маркировочных кодах, содержащаяся в литературе, требует критического подхода и осмысления. К сожалению, красиво оформленный каталог с безукоризненной полиграфией не гарантируют от опечаток, ошибок, разночтений и противоречий, поэтому исходите из данных, что приведены в справочнике о маркировке радиоэлементов.

В заключение хотелось бы поблагодарить источники, которые были использованы для подбора материала к данной статье:

www.mp16.ru

www.rudatasheet.ru

www.texnic.ru

www.solo-project.com

www.ra4a.narod.ru

Предыдущая
ПолупроводникиЧто такое биполярный транзистор
Следующая
ПолупроводникиSMD транзисторы

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: