Транзистор b772

Экономичный умзч на транзисторах 2sc3331v, 2sa1286, 2sa928a, 2sd2058y (13вт)

Модификации и группы транзистора B772

Модель PC UCB UCE UBE IC TJ fT CC hFE Корпус
2SB772 12,5 (1,25) 60 30 5 3 150 50 60 TO-126
2SB772 (R, O, Y, GR) 10,0 (1,0) 40 30 5 3 150 40 55 160 TO-126
BTB772ST3 10,0 (1,0) 40 30 5 2 150 80 55 180 TO-126
BTB772T3 10,0 (1,0) 40 30 5 3 150 80 55 180 TO-126
CSB772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
CSB772 (P, Q, R, E) 10,0 (1,0) 40 30 5 3 150 80 55 200 TO-126
FTB772 (1.25) 40 30 6 3 150 80 55 60 TO-126
KSB772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
KSB772 (R, O, Y, GR) 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
KTB772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
PMB772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
ST2S772T 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
TSB772CK 10,0 (1,0) 50 30 5 3 150 80 55 100 TO-126
B772C (1.25) 40 30 6 3 150 50 60 TO-126C
B772P 15,0 (1,25) 40 30 6 3 150 50 120 TO-126D
HSB772 10,0 (1,0) 40 30 5 3 150 80 55 100 TO-126ML
2SB772B 25,0 (2,0) 40 30 5 3 150 80 55 60 TO-220
2SB772I 10,0 (1,0) 40 30 5 3 150 80 55 30 TO-251
B772PC 10,0 (1,0) 40 30 6 3 150 50 120 TO-251
BTB772I3 10,0 (1,0) 40 30 5 3 150 80 55 180 TO-251
WTP772 10,0 (1,0) 40 30 5 3 150 80 55 30 TO-251
2SB772D 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-252
B772 (R, O, Y, GR) 10,0 (1,0) 40 30 6 3 150 50 60 TO-252
BTB772AJ3 15,0 (1,0) 50 30 7 3 150 190 33 180 TO-252
BTB772J3 10,0 (1,0) 40 30 6 3 150 80 55 180 TO-252
FTB772D 10,0 (1,0) 40 30 6 3 150 50 60 TO-252
GSTD772 10,0 (1,0) 40 30 5 3 150 80 60 TO-252
ST2SB772R 10,0 (1,0) 40 30 6 3 150 50 100 TO-252
B772M (1.25) 40 30 6 3 150 50 60 TO-252-2L
2SB772A (0.5) 70 60 6 3 150 50 60 SOT-89
2SB772GP (1.5) 40 30 5 3 150 100 55 160 SOT-89
2SB772T (0.5) 40 30 5 3 150 80 55 60 SOT-89
BTB772AM3 (2) 50 50 6 3 150 80 25 180 SOT-89
FTB772F (0.5) 40 30 6 3 150 50 60 SOT-89
GSTM772 (0.5) 40 30 5 3 150 80 60 SOT-89
KXA1502 (0.5) 40 20 5 1.5 150 100 20 160 SOT-89
L2SB772 (P, Q) (0.5) 40 30 6 3 150 50 160 SOT-89
ST2SB772U 10,0 (1,0) 40 30 5 3 150 80 55 60 SOT-89
ZX5T250 (0.5) 70 60 6 3 150 50 160 SOT-89
2SB772S (0.5) 40 30 5 3 150 80 45 100 SOT-89
ALJB772 (1) 40 30 6 1.5 150 100 200 TO-92
B772S (0.625) 40 30 6 3 150 50 60 TO-92
BTB772SA3 (0.75) 50 50 5 3 150 80 55 180 TO-92
GSTS772 (0.625) 40 30 5 3 150 80 60 TO-92
HB772S (0.75) 40 30 5 3 150 80 55 100 TO-92
HSB772S (0.75) 40 30 5 3 150 80 55 100 TO-92
TSB772SCT (0.625) 50 30 5 3 150 80 55 100 TO-92
2SB772L 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-92LM
2SB772M (0.35) 40 30 5 3 150 80 45 100 SOT-23
B772SS 10,0 (0,35) 40 30 5 3 150 80 45 100 SOT-23
2SB772N 10,0 (1,0) 40 30 5 3 150 80 55 60 SOT-223
2SB772ZGP (1.5) 40 30 5 3 150 100 55 160 SOT-223

Примечения:

  1. Столбец корпуса. Уточнения для следующих корпусов: TO-251 или TO-252, TO-252  или DPAK, SOT-89 или TO-92.
  2. В столбце «Модель» в скобках указаны дополнительные символы, вводимые в обозначение транзистора в случаях, когда производитель классифицирует изделия по группам параметра hFE.
  3. В столбце мощности «PC Tc(Ta) = 25°С» в скобках указывается значение рассеиваемой мощности в режиме ограничения температуры внешней среды на уровне TA = 25°C.
  4. В режиме ограничения температуры корпуса транзистора TC = 25°C значение рассеиваемой мощности указывается в основном для транзисторов, выпускаемых в крупных корпусах, например, таких как TO-126. Поскольку такой температурный режим означает присутствие охладителя – устройства, стабилизирующего температуру корпуса, для транзисторов, выпускаемых в малоразмерных корпусах (TO-92, SOT-89), где применение охладителя на практике невозможно или нецелесообразно, значение рассеиваемой мощности для условия TC = 25°C большинством производителей не указывается.
  5. Иногда производитель выпускает изделие в корпусе версии повышенной мощности (например – TO-92LM). В этом случае указывается повышенное значение мощности рассеивания (см. таблицу, транзистор 2SB772L).

Предельные эксплуатационные характеристики

Данные в таблице действительны при Ta=25°C, если не указано иное.

Характеристика Символ Значение ٭
Напряжение коллектор-база, В UCBO 40
Напряжение коллектор-эмиттер, В UCEO 30
Напряжение база-эмиттер, В UEBO 5
Ток коллектора постоянный, А ICO 3
Ток коллектора импульсный, А ICM 7
Ток базы постоянный, А IBO 0,6
Мощность рассеяния, Вт 2SB772 Корпус TO-92 при Ta = 25°С PC 0,5
Корпус TO-126/TO-126C 1
Корпус TO-251/TO-252 1
2SB772S Корпус SOT-89 0,5
Корпус SOT-223 1
2SB772SS Корпус SOT-23 при Ta = 25°С 0,35
при TС = 25°С 10
Предельная температура кристалла, °С TJ 150
Диапазон температур при хранении, °С TSTG от -55 до 150

٭ — для транзисторов PNP-структуры все значения токов и напряжений указаны по модулю.

В таблицу предельных эксплуатационных характеристик и типовых термических характеристик введены для сравнения данные по рассеиваемой мощности транзисторов 2SB772/S/SS, выпускаемых в различных корпусах одним и тем же производителем: “Unisonic Technologies Co., Ltd”. Остальные параметры и характеристики полностью повторяются.

Принципиальная схема

Принципиальная схема такого УМЗЧ показана на рис. 1. Устройство представляет собой одноканальный транзисторный усилитель мощности низкой частоты, рассчитанный на однополярное напряжение питания 5…28 В и сопротивление подключенной нагрузки 2…50 Ом.

Максимальная выходная мощность зависит от напряжения питания, применённых выходных транзисторов и условий их охлаждения. Для упрощения схемы в конструкции применены не составные биполярные транзисторы с высоким и сверхвысоким коэффициентом передачи тока базы.

Рис. 1. Схема экономичного УМЗЧ на 13 Ватт на транзисторах 2SC3331V, 2SA1286, 2SA928A, 2SD2058Y.

Напряжение звуковой частоты через RC фильтр R1C1 поступает на регулятор громкости — переменный резистор R2. Через разделительный конденсатор C3 напряжение ЗЧ поступает на маломощный транзистор VТ1, включенный по схеме с общим эмиттером.

Основное усиление по напряжению осуществляет транзистор VТ2 со сверхвысоким коэффициентом передачи тока базы. Выходной каскад собран на мощных п-р-п транзисторах VТ4, VТ5. Транзистор VТ2 вместе с VT3 представляют собой составной транзистор по схеме Шиклаи.

По схеме такого же составного транзистора включены VТ4, VТ5. Применение транзистора VТ4 позволяет значительно снизить ток коллектора VТ2, а также упрощает управление током покоя выходного каскада, позволяет получить большую выходную мощность при меньших искажениях.

Ток покоя выходного каскада зависит от падения напряжения на последовательно включенных VD1, VD2, RT1. В представленном усилителе он может быть от нуля.

Коэффициент усиления по напряжению задаётся соотношением сопротивлений резисторов R10, R8. При положении подвижного контакта переменного резистора в режиме максимальной громкости он будет около 62. Резистор R6 и конденсатор С2 — фильтр напряжения смещения VT1.

Подстроечным резистором R2 устанавливают в средней точке выходного каскада («+» конденсатора С7) рабочее напряжение, равное половине напряжения питания.

Резистор R11 включен по схеме вольтодобавки для питания VТ4. Резисторы R13, R14 уменьшают сквозной ток через транзисторы VТ4, VТ5 в моменты их переключения, а также, немного стабилизируют их ток покоя.

Цепочка R9C5 уменьшает вероятность самовозбуждения УМЗЧ. Конденсаторы С6, С9 — блокировочные в цепи питания.

При нулевом токе покоя и напряжении питания 9 В УМЗЧ потребляет ток 0,6 мА. То же при напряжении питания 25 В — 3,2 мА. Максимальная выходная мощность без ограничения амплитуды выходного сигнала 13 Вт при напряжении питания 25В на нагрузке сопротивлением 4 Ом. То же при напряжении питания 5 В — 0,25Вт или 2,25Вт при 12В.

При напряжении питания 25 В амплитуда выходного сигнала 22 В на нагрузке сопротивлением 4 Ом или 24 В на 8 Ом.

Транзистор, который включен по схеме с общим эмиттером

В данной конфигурации вывод эмиттера является общим между выводами входа и выхода, как показано на рисунке 9. Эта конфигурация обеспечивает среднее полное сопротивление на входе, среднее полное сопротивление на выходе, средний коэффициент усиления тока и коэффициент усиления напряжения.

Рисунок 9 Схема с общим эмиттером

Характеристики входа

Рисунок 10 показывает характеристики входа для данной конфигурации, которая объясняет изменение в IB в соответствии с VBE, где VCE является постоянной.

Рисунок 10 Характеристики входа

Исходя из рисунка, сопротивление на входе может быть представлено как:

Характеристики выхода

Характеристики выхода у такой конфигурации (Рисунок 11) также рассматриваются как характеристики коллектора. Этот график показывает изменение в IC с изменениями в VCE, когда IB удерживается постоянной. Исходя из графика, можно получить сопротивление на выходе следующим образом:

Рисунок 11 Характеристики выхода

Характеристики передачи тока

Эти характеристики данной конфигурации показывают изменение IC с IB, удерживающим VCE в качестве постоянной. Это может быть математически выражено как:

Это соотношение рассматривается как коэффициент усиления тока с общим эмиттером, и оно всегда больше единицы.

Рисунок 12 Характеристики передачи тока

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

↑ Функция REM

уже сделана в преобразователе, но она мне не очень нравится. Её я перевел на постоянный плюс, а REM организовал при помощи 2-х релюшек (такие обычно идут с сигнализациями, центральными замками), каждая на свой преобразователь и приклеил их на суперклей к корпусу. Подключил так: там четыре контакта, два на питание и два силовых. На один силовой подключил постоянный плюс, на второй плюс к для питания преобразователя. На одну клему питания приходит постоянный минус, а на вторую клемму питания плюс берется с клеммы REM. Так, при включении магнитолы появляется плюс на релюшке, та включается, и на преобразователь приходит питание. Вот вобщем-то и все, осталось все спаять и скрутить.

Все разъемы и детали были куплены в магазине и на рынке. Итак, первое включение закончилось удачно, все работает, звук радует своей мощностью и четкостью. Я остался доволен.

ИНВЕРТОР 1

Этот инвертор предназначен только для питания сабвуферного усилителя по схеме ланзара. Выходное напряжение +/-65 Вольт. Инвертор не имеет стабилизацию выходного напряжения, но не смотря на это серьезные скачки напряжения не наблюдал. Построен инвертор по классической двухтактной схеме с применением ШИМ контроллера на микросхеме TL494. Трансформатор был намотан на двух кольцах марки 3000НМ (Евгений, спасибо, что выручил и с другого конца света выслал кольца), размеры колец 45*28*8. Если есть возможность, то используйте феррит марки 2000НМ, с ним меньше потерь в трансформаторе. Кольца не склеивал, просто обмотал прозрачным скотчем. Грани кольца не закруглял, просто перед намоткой сердечник обмотал полоской стекловолокна в два слоя. Стекловолокно не боится перегрева и обеспечивает довольно неплохую изоляцию обмоток, хотя в таких инверторах промышленного образца никогда не изолируют обмотки друг от друга, поскольку напряжение не столь высокое.

Намотка делалась двумя полностью идентичными шинами, каждая из шин состоит из 12 жил провода с диаметром 0,7 мм. Перед намоткой берем контрольный провод, им будем выяснять, какой длины нужна шина. Контрольный провод может быть любым, любого сечения (для удобства диаметр подобрать 0,3-1 мм), Итак, берем контрольный провод и мотаем 5 витков по на кольце, витки равномерно растягивая по всему кольцу. Теперь отматываем обмотку измеряя длину, допустим длина провода составила 20 см, следовательно для намотки основной обмотки провод нужно брать с запасом 5-7 см, т.е. 25-27 см, разумеется, длина не точная и привел только для примера. Теперь переходим дальше. Поскольку первичная (силовая) обмотка у нас состоит из двух полностью аналогичных плеч, то нам нужны 24 жилы провода 0,7 мм одинаковой длины. Дальше нужно собрать шины из 12 жил, концы жил скручиваем и переходим к процессу намотки.

В разных источниках приводятся отличающиеся друг от друга технологии намотки, этот метод отличается тем, что позволяет получить максимально равноценные обмотки. Намотку делаем сразу двумя шинами, желательно использовать жгут для удобства, но я мотал без него. Максимально аккуратно мотаем 5 витков по всему кольцу, в итоге у нас получается 4 отвода. Для стойкости витков обмотку изолируем, пробная изоляция может быть любой — скотч, изолента, нитки и т.п, лишь бы обмотка держалась, если уверены в правильности намотки, то можно ставить конечную изоляцию (в моем случае опять стекловолокно). Теперь нужно сфазировать обмотки, подключая начало первой полуобмотки (плеча) к концу второй или наоборот начало второй, к концу первой. Мест стыковки обмоток есть отвод от середины, на него подается силовой плюс 12 Вольт по схеме. Вторичная обмотка мотается и фазируется по тому же принципу, что и первичная. Обмотка состоит из 2х24 витков, мотается двумя шинами. Каждая шина состоит из 5 жил провода 0,7 мм.

Диодный выпрямитель собран из 4-х диодов серии КД213А. Это импульсные диоды с обратным напряжением до 200 Вольт, отлично себя чувствуют на частотах 50-80 кГц (хотя могут работать на частотах до 100 кГц), а максимально допустимый ток 10 Ампер — то, что нужно. В дополнительном охлаждении диоды не нуждаются, хотя в ходе работы может наблюдаться тепловыделение.

Дросселя в выходной цепи использовал готовые, от компьютерных блоков питания. Намотаны дросселя на ферритовом стержне (длина 1,5-2 см, диаметр 6 мм). Обмотка содержит 5-6 витков, намотана проводом 2-2,5 мм, для удобства можно мотать несколькими жилами более тонкого провода. Сглаживающие электролиты брал с напряжением 100 Вольт 1000 мкФ, работают с большим запасом. В итоге на плате инвертора 4 таких конденсатора в плече, еще два аналогичных стоят на плате усилителя Ланзар, т.е общая емкость фильтров в плече 5000 мкФ. Перед и после дросселей стоят пленочные конденсаторы с напряжением 100 Вольт, их емкость не особа критична и может быть в районе 0,1-1 мкФ.

Справочная таблица по SMD транзисторам

Обозначение на корпусе Тип транзистора Условный аналог
15 MMBT3960 2N3960
1A BC846A BC546A
1B BC846B BC546B
1C MMBTA20 MPSA20
1D BC846
1E BC847A BC547A
1F BC847B BC547B
1G BC847C BC547C
1H BC847
1J BC848A BC548A
1K BC848B BC548B
1L BC848C BC548C
1M BC848
1P FMMT2222A 2N2222A
1T MMBT3960A 2N3960A
1X MMBT930
1Y MMBT3903 2N3903
2A FMMT3906 2N3906
2B BC849B BC549B
2C BC849C BC549C / BC109C / MMBTA70
2E FMMTA93
2F BC850B BC550B
2G BC850C BC550C
2J MMBT3640 2N3640
2K MMBT8598
2M MMBT404
2N MMBT404A
2T MMBT4403 2N4403
2W MMBT8599
2X MMBT4401 2N4401
3A BC856A BC556A
3B BC856B BC556B
3D BC856
3E BC857A BC557A
3F BC857B BC557B
3G BC857C BC557C
3J BC858A BC558A
3K BC858B BC558B
3L BC858C BC558C
3S MMBT5551
4A BC859A BC559A
4B BC859B BC559B
4C BC859C BC559C
4E BC860A BC560A
4F BC860B BC560B
4G BC860C BC560C
4J FMMT38A
449 FMMT449
489 FMMT489
491 FMMT491
493 FMMT493
5A BC807-16 BC327-16
5B BC807-25 BC327-25
5C BC807-40 BC327-40
5E BC808-16 BC328-16
5F BC808-25 BC328-25
5G BC808-40 BC328-40
549 FMMT549
589 FMMT589
591 FMMT591
593 FMMT593
6A BC817-16 BC337-16
6B BC817-25 BC337-25
6C BC817-40 BC337-40
6E BC818-16 BC338-16
6F BC818-25 BC338-25
6G BC818-40 BC338-40
9 BC849BLT1
AA BCW60A BC636 / BCW60A
AB BCW60B
AC BCW60C BC548B
AD BCW60D
AE BCX52
AG BCX70G
AH BCX70H
AJ BCX70J
AK BCX70K
AL MMBTA55
AM BSS64 2N3638
AS1 BST50 BSR50
B2 BSV52 2N2369A
BA BCW61A BC635
BB BCW61B
BC BCW61C
BD BCW61D
BE BCX55
BG BCX71G
BH BCX71H BC639
BJ BCX71J
BK BCX71K
BN MMBT3638A 2N3638A
BR2 BSR31 2N4031
C1 BCW29
C2 BCW30 BC178B / BC558B
C5 MMBA811C5
C6 MMBA811C6
C7 BCF29
C8 BCF30
CE BSS79B
CEC BC869 BC369
CF BSS79C
CH BSS82B / BSS80B
CJ BSS80C
CM BSS82C
D1 BCW31 BC108A / BC548A
D2 BCW32 BC108A / BC548A
D3 BCW33 BC108C / BC548C
D6 MMBC1622D6
D7 BCF32
D8 BCF33 BC549C / BCY58 / MMBC1622D8
DA BCW67A
DB BCW67B
DC BCW67C
DE BFN18
DF BCW68F
DG BCW68G
DH BCW68H
E1 BFS17 BFY90 / BFW92
EA BCW65A
EB BCW65B
EC BCW65C
ED BCW65C
EF BCW66F
EG BCW66G
EH BCW66H
F1 MMBC1009F1
F3 MMBC1009F3
FA BFQ17 BFW16A
FD BCV26 MPSA64
FE BCV46 MPSA77
FF BCV27 MPSA14
FG BCV47 MPSA27
GF BFR92P
H1 BCW69
H2 BCW70 BC557B
H3 BCW89
H7 BCF70
K1 BCW71 BC547A
K2 BCW72 BC547B
K3 BCW81
K4 BCW71R
K7 BCV71
K8 BCV72
K9 BCF81
L1 BSS65
L2 BSS70
L3 MMBC1323L3
L4 MMBC1623L4
L5 MMBC1623L5
L6 MMBC1623L6
L7 MMBC1623L7
M3 MMBA812M3
M4 MMBA812M4
M5 MMBA812M5
M6 BSR58 / MMBA812M6 2N4858
M7 MMBA812M7
O2 BST82
P1 BFR92 BFR90
P2 BFR92A BFR90
P5 FMMT2369A 2N2369A
Q3 MMBC1321Q3
Q4 MMBC1321Q4
Q5 MMBC1321Q5
R1 BFR93 BFR91
R2 BFR93A BFR91
S1A SMBT3904
S1D SMBTA42
S2 MMBA813S2
S2A SMBT3906
S2D SMBTA92
S2F SMBT2907A
S3 MMBA813S3
S4 MMBA813S4
T1 BCX17 BC327
T2 BCX18
T7 BSR15 2N2907A
T8 BSR16 2N2907A
U1 BCX19 BC337
U2 BCX20
U7 BSR13 2N2222A
U8 BSR14 2N2222A
U9 BSR17
U92 BSR17A 2N3904
Z2V FMMTA64
ZD MMBT4125 2N4125

Если вдруг в таблице не оказалось нужных Вам данных, то у нас на сайте есть программа по SMD элементам, скачать которую можно совершенно на этой странице. Вообще у нас все программы бесплатные, без регистраций, без файлообменников и без СМС!Вы также можете задать любой интересующий вопрос и на нашем ФОРУМЕ!

Графические иллюстрации характеристик

Рис. 1. Статические внешние характеристики транзистора (в схеме с ОЭ): зависимость коллекторного тока IC от напряжения коллектор-эмиттер UCE при разных токах базы IB управления.

Рис. 2. Зависимость статического коэффициента усиления hFE от коллекторной нагрузки IC. Зависимость снята при величине напряжения коллектор-эмиттер UCE = 2 В.

Рис. 3. Зависимости напряжения насыщения коллектор-эмиттер UCE(sat) и напряжения насыщения база-эмиттер UBE(sat) от коллекторной нагрузки IC.

Рис. 4. Изменение полосы пропускания транзистора fT при изменении коллекторной нагрузки IC. Зависимость снята при напряжении коллектор-эмиттер UCE = 5 В и токе базы IB = 8 мА.

Рис. 5. Зависимость выходной емкости (коллекторного перехода) CC от напряжения коллектор-база UCB. Характеристика снималась при частоте f = 1 МГц и токе эмиттера IE = 0.

Рис. 6. Характеристика ограничения рассеиваемой транзистором мощности PC при различных температурах корпуса транзистора TC.

Рис. 6. Характеристика ограничения (в %) коллекторного тока IC при изменении температуры корпуса TC и при двух различных условиях:

  • нижняя характеристика (Dissipation limited) при ограничении мощности рассеивания;
  • верхняя характеристика (S/b limited) — ограничение предельного тока транзистора для предотвращения вторичного пробоя п/п структуры локально в местах повышенной плотности тока.

Рис. 7. Область безопасной работы транзистора.

Предельный коллекторный ток в импульсном режиме IC(max) Pulse и предельный постоянный ток IC(max) DC ограничивают предельную токовую нагрузку транзистора, исключая прогорание структуры.

Предельное напряжение коллектор-эмиттер UCE ограничивает нагрузку по напряжению, исключая электрический пробой структуры.

Предельная рассеиваемая мощность ограничивает тепловую нагрузку транзистора при параметрах, меньших предельного тока и напряжения. На графиках показаны ограничения по рассеиваемой мощности при импульсном режиме с длительностью импульсов 0,1 мс, 1 мс, 10 мс и в режиме постоянного тока (помечено DC).

Несколько слов о деталях:

При сборке усилителя, в качестве конденсаторов постоянной ёмкости (помимо электролитических), желательно применять слюдяные конденсаторы. Например типа КСО, такие, как ниже на рисунке.

Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В; Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.

Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2. На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.

Пластина разрезается по линиям, потом этой заготовке придают форму трубки, используя для этой цели любую подходящую цилиндрическую оправку (например сверло). После этого заготовку (1) плотно надевают на корпус транзистора (2) и прижимают пружинящим кольцом (3), предварительно отогнув боковые крепёжные ушки.

Кольцо изготовляется из стальной проволоки диаметром 0,5-1,0 мм. Вместо кольца можно использовать бандаж из медной проволоки. Теперь осталось загнуть снизу боковые ушки для крепления радиатора за корпус транзистора и отогнуть на нужный угол надрезанные перья.

Подобный радиатор можно также изготовить и из медной трубки, диаметром 8мм. Отрезаем кусок 6…7см, разрезаем трубку вдоль по всей длине с одной стороны. Далее на половину длины разрезаем трубку на 4 части и отгибаем эти части в виде лепестков и плотно надеваем на транзистор.

Так как диаметр корпуса транзистора где-то 8,2 мм, то за счёт прорези по всей длине трубки, она плотно оденется на транзистор и будет удерживаться на его корпусе за счёт пружинящих свойств. Резисторы в эмиттерах выходного каскада – либо проволочные мощностью 5 Вт, либо типа МЛТ-2 3 Ом по 3шт параллельно. Импортные пленочные использовать не советую – выгорают мгновенно и незаметно, что ведет к выходу из строя сразу нескольких транзисторов.

ВИДЕО УСИЛИТЕЛЯ

Плата для LM крепится на основную плату УНЧ через стойки в виде трубок и болтов. Питание для этого блока берется со второго инвертора, предусмотрена отдельная обмотка. Выпрямитель и фильтрующие конденсаторы расположены непосредственно на плате усилителя. В качестве выпрямительных диодов уже традиционные КД213А. Дросселей для сглаживания ВЧ помех не использовал, да и нет нужды их применять, поскольку даже в довольно брендовых автомобильных усилителях их часто не ставят. В качестве теплоотвода использовал набор дюралюминиевых болванок 200х40х10 мм.

На плату также укреплен кулер, который одновременно отводит теплый воздух с этого блока и отдувает теплоотводы инверторов. С электроникой аудиокомплекса полностью разобрались — переходим к механике и слесарным работам…

Основа любой радиолюбительской конструкции — красивый удобный корпус, тем более он должен прилично смотреться у аппарата, который занимает достойное место в гостинной или вашем рабочем кабинете.

Простой транзисторный усилитель класса А

Здравствуйте, аудиофилы-самоделкины! (аудиофилы в хорошем смысле, конечно)

Речь сегодня пойдёт о самом что ни на есть аудиофильском усилителе — класс А, всё-таки. Не хухры-мухры. Спроектирован он был ещё в прошлом веке, но и по сей день его собирают множество радиолюбитей, вот что значит по-настоящему удачная схема. Называется он «JLH 1969» — аббревиатура инициалов автора схемы и год создания. Конечно, база компонентов в те времена была совсем другой, но это не помешает нам собрать этот легендарный усилитель из того, что найдётся сейчас под рукой. Особенностью схемы является её работа в классе А с высоким током покоя выходного каскада. Это обеспечивает минимум нелинейных искажений в выходном сигнале, некую музыкальность, но зато схема потребляет значительный ток и требует для выходных транзисторов приличного размера радиаторов. Некоторые люди считают, что такая схемотехника является наиболее правильной и позволяет слушать музыку с максимальным качеством воспроизведения. Ниже представлена сама схема.

Схема содержит всего 4 транзистора, из них VT3 и VT4 — выходные, должны обладать максимально близкими параметрами, для этого достаточно просто взять два транзистора из одной партии, отлично подойдут КТ805, 2SC5200, 2N3055, 2SC5198. При этом их коэффициент усиления должен быть как минимум 120. VT1 — маломощный входной PNP структуры, подойдут 2N3906, BC212, BC546, КТ361, а так же можно поэкспериментировать с различными германиевыми вариантами, благо их PNP структуры много. VT2 образует драйверный каскад, сюда нужно что-то чуть помощнее, например, КТ801, КТ630, КТ602, 2N697, BD139, 2SC5707, 2SD2165.

Некоторые номиналы схемы, для пущей академичности, следует варьировать исходя из сопротивления нагрузки и напряжения питания. Напряжение может варьироваться от 12 до 40В, соответственно чем оно больше, тем больше будет выходная мощность, и тем сильнее будет греться оконечный каскад. Ниже представлена таблица для подбора номиналов. Несколько слов о настройке. Первым делом включать усилитель нужно без нагрузки и без подключенного источника сигнала. Включаем сперва на небольшом напряжении, контролируем ток покоя, он должен составлять 0,8 — 1,5А. Параллельно с этим замеряем напряжение в точке соединения VT3 и VT4 — оно должно быть равно половине напряжения питания. Если это не так, то подгоняем его максимально близко с помощью подстроечного резистора R2. Также на схеме можно увидеть нарисованную пунктиром цепь Цобеля — последовательно включенный резистор и конденсатор, они служат для подавления самовозбуждения. Резистор сопротивлением 10 Ом, конденсатор 100 нФ.

Монтаж выполняется на печатной плате, обратите внимание, что она полностью залита землей вокруг дорожек, это способствует лучшей помехозащищённости и в какой-то степени защищает от самовозбуждения. Однако при пайке нужно быть максимально аккуратным, запросто можно случайно посадить «соплю» между земляным полигоном и дорожкой. Если усилитель не заработает с первого раза, рекомендую тщательно прозвонить всё на замыкание, ведь глазом волосинку-перемычку очень сложно увидеть

Удачной сборки!

Если усилитель не заработает с первого раза, рекомендую тщательно прозвонить всё на замыкание, ведь глазом волосинку-перемычку очень сложно увидеть. Удачной сборки!

plata.zip (скачиваний: 100)

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Аналоги

Для замены подойдут транзисторы кремниевые, со структурой PNP, эпитаксиальнопланарные, которые применяются в широкополосных усилителях мощности, умножителях частоты и автогенераторах высокочастотного диапазона.

Отечественное производство

Модель PC UCB UCE UBE IC TJ fT CC hFE Корпус Примеча-ние
2SB772 12,5 (1,25) 60 30 5 3 150 50 60 TO-126
(2)КТ914А 7 65 65 4 0,8 150 350 12
(2)КТ932А/Б/В 20 80/60/40 4,5 2 150 100 300 от 15 до 120 TC ≤ 50°C
(2)КТ933А/Б 5 80/60 4,5 0,5 150 75 100 от 15 до 120 TC ≤ 50°C
КТ973А/Б/В/Г 8 60/45/60/60 5 2 150 от 750 до 5000
КТ974А/Б/В 5 80/60/50 3 2 150 450 80 от 10 до 120 TC ≤ 50°C

Зарубежное производство

Модель PC UCB UCE UBE IC TJ fT CC hFE Корпус
2SB772 12,5 (1,25) 60 30 5 3 150 50 60 TO-126
2SA1359 (O, Y) 10,0 (1,0) 40 40 5 3 150 100 35 70 TO-126
2SB843 10,0 (1,0) 50 40 6 5 175 90 TO-126
BTB1424AD3 10,0 (1,0) 50 50 6 3 150 240 35 180 TO-126
BTB1424AT3 10,0 (1,0) 50 50 6 3 150 240 35 180 TO-126
H772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
HT772 10,0 (1,0) 40 30 5 3 150 80 55 100 TO-126
KSH772 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
ST2SB772T 10,0 (1,0) 40 30 5 3 150 80 55 60 TO-126
2SA1761 (0,9) 60 50 6 3 150 100 120 TO-92
2SA3802 (0,8) 40 30 6 3 150 80 60 TO-92
2SB985 (R, S, T, U) (1) 60 60 6 3 165 150 280 TO-92
BR3CG3802 (0,8) 40 30 6 3 150 80 60 TO-92
KTB985 (1) 60 50 6 3 150 150 100 TO-92
ZTX949 (1,2) 50 30 6 4,5 200 120 100 TO-92
ZTX951 (1,2) 100 60 6 4 200 100 TO-92
ZTX953 (1,2) 140 100 6 3,5 200 125 100 TO-92
2SA2039-TL-E 15 50 50 6 5 150 360 24 200 TO-252
2SA2126-TL-E 15 50 50 6 3 150 390 24 200 TO-252
2SAR573D 10 50 50 6 3 150 300 35 180 TO-252
BTA2039J3 15 60 50 6 5 150 150 42 200 TO-252
BTB1184J3 15 6 3 150 80 35 180 TO-252
BTB1184J3S 15 6 3 150 80 35 270 TO-252
BTB9435J3 10 40 32 6 3 150 180 20 180 TO-252

Примечание: данные в таблицах взяты из даташит компаний-производителей.

H13005 Datasheet (PDF)

1.1. ksh13005a.pdf Size:227K _upd

KSH13005A KSH13005A ◎ SEMIHOW REV.A1,Oct 2007 KSH130 005A KSH13005A Switch Mode series NPN silicon Power Transistor Switch Mode series NPN silicon Power Transistor — High voltage, high speed power switching — Suitable for switching regulator, inverters motor controls 4 Amperes NPN Silicon Power Transistor Absolute Maximum Ratings TC=25℃ unless otherwise noted 75 Watts TO-220

1.2. ksh13005af.pdf Size:223K _upd

KSH13005AF KSH13005AF ◎ SEMIHOW REV.A1,Oct 2007 KSH130 005AF KSH13005AF Switch Mode series NPN silicon Power Transistor Switch Mode series NPN silicon Power Transistor — High voltage, high speed power switching — Suitable for switching regulator, inverters motor controls 4 Amperes NPN Silicon Power Transistor Absolute Maximum Ratings TC=25℃ unless otherwise noted 75 Watts TO

1.3. ksh13005w.pdf Size:144K _shantou-huashan

N P N S I L I C O N T R A N S I S T O R Shantou Huashan Electronic Devices Co.,Ltd. KSH13005W █ HIGH VOLTAGE SWITCH MODE APPLICICATION High Speed Switching Suitable for Switching Regulator and Montor Control █ ABSOLUTE MAXIMUM RATINGS(Ta=25℃) TO-263(D2PAK) Tstg——Storage Temperature………………………… -55~150℃ Tj——Junction Temperature………

1.4. h13005adl.pdf Size:120K _jdsemi

R H13005ADL 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Mainly used for 110V power Fluorescent Lamp、 Electronic Ballast,etc 2. 2. 2

1.5. h13005dl.pdf Size:120K _jdsemi

R H13005DL 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Mainly used for 110V power Fluorescent Lamp、 Electronic Ballast,etc 2. 2. 2

1.6. h13005.pdf Size:116K _jdsemi

R H13005 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Fluorescent Lamp、Electronic Ballast、 Charger and Switch-mode power supplies 2. 2

1.7. h13005d 2.pdf Size:118K _jdsemi

R H13005D 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Fluorescent Lamp、Electronic Ballast、 and Switch-mode power supplies 2. 2. 2.

1.8. h13005d.pdf Size:118K _jdsemi

R H13005D 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Fluorescent Lamp、Electronic Ballast、 and Switch-mode power supplies 2. 2. 2.

Основные характеристики и параметры транзисторов

Классификация транзисторов. Проводимость, усиление, параметры, определяющие мощность, допустимое напряжение, частотные и шумовые свойства транзистора.

Транзистор, в общем понимании этого слова – это полупроводниковый прибор, как правило, с тремя выводами, способный усиливать поступающий на него сигнал. Выполняя функции усиления, преобразования, генерирования, а также коммутации сигналов в электрических цепях, в данный момент транзистор является основой подавляющего большинства электронных устройств и интегральных микросхем.

На принципиальных схемах транзистор обычно обозначается латинскими буквами «VT» или «Q» с добавлением позиционного номера (например, VT12 или Q12).

В отечественной документации прошлого века применялись обозначения «Т», «ПП» или «ПТ». Преобладающее применение в промышленных и радиолюбительских конструкциях находят два типа транзисторов – биполярные и полевые. Какими они бывают?

ОСНОВНАЯ КЛАССИФИКАЦИЯ, ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ.

Основная классификация, определяющая область применения транзисторов, ведётся по: исходному материалу, на основе которого они сделаны, структуре проводимости, максимально допустимому напряжению, максимальной мощности, рассеиваемой на коллекторе, частотным свойствам, шумовым характеристикам, крутизне передаточной характеристики (для полевых) или статическому коэффициенту передачи тока (для биполярных транзисторов) . Рассмотрим перечисленные пункты классификации более детально.

По исходному полупроводниковому материалу транзисторы классифицируются на: — германиевые (в настоящее время не производятся); — кремниевые (наиболее широко представленный класс); — из арсенида галлия (в основном СВЧ транзисторы) и др.

По структуре транзисторы классифицируются на: — p-n-p структуры – биполярные транзисторы «прямой проводимости»; — n-p-n структуры – биполярные транзисторы «обратной проводимости»; — p-типа – полевые транзисторы с «p-типом проводимости»; — n-типа – полевые транзисторы с «n-типом проводимости». В свою очередь, полевые транзисторы подразделяются на приборы с управляющим p-n-переходом (JFET-транзисторы) и транзисторы с изолированным затвором (МДП или МОП-транзисторы).

По параметру мощности транзисторы делятся на: — транзисторы малой мощности (условно Рmах — транзисторы средней мощности (0,3 — мощные транзисторы (Рmах >1,5 Вт). Также косвенным показателем мощности транзистора является параметр максимально допустимого тока коллектора (Iк_max).

По параметру максимально допустимого напряжения Uкэ или Uси транзисторы делятся на: — транзисторы общего применения (условно Uкэ_mах — высоковольтные транзисторы (Uкэ_mах > 100 В). У современных биполярных и полевых транзисторов параметр Uкэ_mах (Uси_mах) может достигать нескольких тысяч вольт!

По частотным характеристикам транзисторы делятся на: — низкочастотные транзисторы (условно Fгр — среднечастотные транзисторы (3 — высокочастотные транзисторы (30 — сверхвысокочастотные транзисторы (Fгр > 300 МГц); Основным параметром, характеризующим быстродействия транзистора, является граничная частота коэффициента передачи тока (Fгр). Косвенным – входная и выходная ёмкости. Для транзисторов, разработанных для использования в ключевых схемах, также может указываться параметр задержки переключения (tr и ts).

По шумовым характеристикам транзисторы делятся на: — транзисторы с ненормированным коэффициентом шума; — транзисторы с нормированным коэффициентом шума (Кш).

Коэффициент передачи тока (h21 – для биполярного транзистора) и крутизна передаточной характеристики (S – для полевого) являются одними из основных параметров полупроводника. От него зависят как качественные показатели транзисторного усилительного каскада, так и требования, предъявляемые к предыдущим и последующим каскадам.

Однако давайте будем считать эту статью вводной, а углубляться и подробно рассуждать о влиянии тех или иных параметров на работу и поведение биполярного или полевого транзистора будем на следующих страницах. Полный перечень статей, посвящённых описанию работы транзистора, а также расчётам каскадов на полевых и биполярных полупроводниках, приведён в рубрике «Это тоже может быть интересно».

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: