В каких режимах функционирует полевой транзистор
Режим отсечки
Как уже упоминалось, расстояние между стоком и истоком, регулируется затвором. Алгоритм работы транзистора виден в простейшей схеме, управляющей качеством освещения от лампы накаливания. Когда на затворе отсутствует напряжение, он закрыт, и электрический ток через лампу накаливания не течет.
Для управления светом лампы нужна смена напряжения на затворе по отношению к истоку. У нас n-канальный транзистор, поэтому на затвор подается напряжение со знаком “+”. В окончательном виде irfz44n схема выглядит так:
Так каким же должно быть напряжение на затворе, чтобы ток внутри цепи стока-истока был максимальным?
Возьмем стрелочный блок питания irfz44n для регуляции напряжения. Соберем его по схеме и подадим на затвор 1 В. Лампа не загорится. Если же увеличить напряжение до 3,5 В, амперметр покажет появление тока в лампе накаливания. Но она все равно не загорится, так как такой силы тока не хватает для накала вольфрамовой нити.
Режим активной работы irfz44n
Напряжение в районе 3,5 В частично приоткрывает транзистор. Этот показатель отличается у разных видов полевиков и находится в пределах 0,5-5 В. В даташит этот показатель именуют Gate threshold voltage (предельное напряжение затвора).
Если плавно регулировать величину канала устройства, повышая напряжение, поданное на затвор, становится видно постепенное накаливание нити лампы. Корректируя уровень напряжения, можно создать необходимый уровень освещения. Это и объясняет название данного режима — активный. При нем сопротивление индуцируемого канала транзистора меняется, согласно напряжению на затворе.
В результате активной работы устройство может перегреться. Поэтому необходимо пользоваться охлаждающим радиатором, рассеивающим тепло в окружающую среду.
Режим насыщения irfz44n
Для полного открытия полевого транзистора требуется подача напряжения до того момента, пока лампа не станет гореть на уровне всего канала. В данном режиме сопротивление канала стока-истока находится в минимуме и почти не сопротивляется течению электрического тока.
Примечательно, что само устройство в данном случае не нагревается. Это можно объяснить формулой: P= I2C R. При сопротивлении, равном каким-то сотым долям ома транзистору просто не с чего нагреваться.
Так что, самые мягкие режимы для полевика — это полное открытие или закрытие канала. Если он закрыт, сопротивление канала стремится к бесконечности, а ток, проходящих через него, минимален по закону Ома. Если подставить эти значения в формулу выше, будет понятно, что рассеянная мощность приближается к нулю.
Отстъпка 15a 400 W Mosfet триггерный превключвател модул с Pwm регулатор на контролния панел
- Начало
- Активни съставки
15A 400 W MOSFET Триггерный Превключвател Модул С PWM Регулатор на контролния Панел
Оценка: 5
Цвят :
Количества:
Добави в количката
Описание
Коментари
Технически характеристики
Преглед
Основни моменти модул:
1. Използването на вносни паралелно активно излизане dual-MOS, по-ниско съпротивление, по-голям ток, силна мощност.При стайна температура, за да осигури ток 15А, мощност 400 W;
2. Широк входен сигнал напрежение, поддръжка на PWM;
3. Лесна за управление на устройства с висока мощност.
Технически характеристики на продукта и областта му на приложение:
1. Работно напрежение: DC 5 v – 36 В;
2. Източник на спусъка: цифров висок-нисък (DC3.3V – 20V), може да бъде свързан порт вход-изхода на микроконтролера, интерфейси АД, храна dc, можете да получите достъп до PWM-сигнал, сигнал може да се поддържа в честотния диапазон 0-20 khz.
3. Изходна мощност: DC DC 5 В-36 В, при стайна температура, постоянен ток 15 А, мощност 400 W!
4. Приложение: Техника с висока мощност, двигатели, електрически крушки, led светлини, двигатели за постоянен ток, микронасосы, електромагнитен клапан; регулиране на скоростта на двигателя, яркостта на лампата.
5. срок на услугата: неограничен-изкл.;
6. Работна температура: -40-85 ℃ ;
7. Размер: 3.4 * 1.7 * 1.2 виж
Тагове: модул камера 1747, комплект комплект 172, корпус zvs, регулатор на напрежение, транзистор jfey, жена pwm, pwm-4-жичен контролер, модул електронен f, контролер 12v pwm 5a, филмът МОП-транзистори.
Напишете отзиви
Най-добрите свързани продукти
Copyright 2023 www.lookingshop.co . Всички права запазени
- Условия за ползване
- Декларация за поверителност
2n5401 vs mpsa92
The table below is to compare the electrical specifications of each 2n5401 and mpsa92 transistor.
Characteristics | 2n5401 | Mpsa92 |
Collector to base voltage (VCB) | -160V | -300V |
Collector to emitter voltage (VCE) | -150V | -300V |
Emitter to base voltage (VEB) | -5V | -5V |
Collector current (IC) | -600mA | -500mA |
Power dissipation | 625mW | 625mW |
Junction temperature (TJ) | -55 to +150°C | -55 to 150°C |
Transition frequency (FT) | 400MHZ | 50MHZ |
Noise (N) | 8dB | – |
Gain (hFE) | 60 to 240hFE | 25 to 40hFE |
Package | TO-92 | TO-92 |
The voltage value of both transistors is different,
For, 2n5401 (VCB = -160V) and (VCE = -150V), but at mpsa92, it is (VCB = -300V) and (VCE= -300V).
The peak collector current and DC current gain value of each transistor is different,
- For, 2n5401 peak (IC= -600mA) and for mpsa92 it is (IC= -500mA)
- For, 2n5401 DC gain current value is (60 to 240hFE) and for mpsa92, it is (25 to 40hFE).
2n5401 graphical characteristics
DC current gain vs collector current
The figure shows the DC current gain vs collector current curve, we can see the current gain is dipping when the collector current increases to a maximum limit.
collector current vs base-emitter voltage
The figure shows the collector current vs base-emitter voltage curve, we can see an increase in collector current with the slightest change in base-emitter voltage.
Applications of 2n5401 transistor
The 2n5401 is a PNP transistor type mostly used for high voltage applications, but the 2n5401 transistor is also the best option for amplifier circuits.
- General-purpose switching and amplifier applications
- Telephony applications
- High voltage applications
- Multi-stage amplifier circuits
- Power supply applications
Безопасность при эксплуатации полевых транзисторов
Все варианты полевиков, не важно, имеют они p-n переходы, или это МОП-варианты, сильно подвержены влиянию перегрузок электричеством на затворах. Прежде всего, это относится к электростатике, которая накапливается в организме людей и устройствах для измерения разных величин
В ряде экземпляров полевиков есть встроенные для защиты частицы. Они называются стабилитронами. Их встраивают между затвором и истоком. Они должны защищать от электростатического заряда, но она не дает гарантии на 100%, и перестраховка необходима.
Желательно провести заземление измерительной и паяльной аппаратуры. Сегодня это происходит в автоматическом режиме с помощью розеток европейского типа, так как они оснащены заземляющими проводниками.
Related Datasheets
Номер в каталоге | Описание | Производители |
2N540 | Trans GP BJT NPN 80V 7A 3-Pin(2+Tab) TO-66 Sleeve | New Jersey Semiconductor |
2N5400 | Amplifier Transistor | ON Semiconductor |
2N5400 | PNP EPITAXIAL SILICON TRANSISTOR | Samsung semiconductor |
2N5400 | PNP Silicon Expitaxial Planar Transistor for general purpose/ high voltage amplifier applications | Semtech Corporation |
Номер в каталоге | Описание | Производители |
6MBP200RA-060 |
Intelligent Power Module |
Fuji Electric |
ADF41020 |
18 GHz Microwave PLL Synthesizer |
Analog Devices |
AN-SY6280 |
Low Loss Power Distribution Switch |
Silergy |
DataSheet26.com | 2020 | Контакты | Поиск |
3.2. Физические процессы в биполярном транзисторе типа p-n-p
Рассмотрим движение носителей заряда через структуру транзистора, которые
протекают в выводах эмиттера, базы и коллектора, при условии, что на
ЭП подано прямое напряжение, а на КП — обратное (т.е. транзистор работает
в активном режиме).
Значение токов, протекающих через структуру транзистора, определяется
не только напряжениями, которые подаются на эмиттерный и коллекторный
переходы, но и взаимодействием этих переходов между собой. Взаимодействие
переходов, в свою очередь, зависит от расстояния между ними, т.е. от
ширины области базы — W.
На рисунке 3.3 показаны движение носителей заряда в структуре p-n-p
транзистора и токи, протекающие во внешних выводах.
Если ширина базы W меньше диффузионной длины пробега неосновных носителей
заряда в базе (рис.3.3
), то значение тока, протекающего через КП, определяется следующими
причинами:
1) т.к. в этом случае ширина базы гораздо меньше ширины области коллектора,
то и количество неосновных носителей заряда, возникающих при данной
температуре в области базы ( ),
будет гораздо меньше количества неосновных носителей заряда, возникающих
в области коллектора ( ),
и можно считать, что
, где Jko
ток неосновных носителей заряда koп
2) дырки, которые диффузионно переходят из эмиттера в базу над снизившимся
потенциальным барьером эмиттерного перехода, в базе продолжают двигаться
диффузионно в основном в сторону коллекторного перехода. А т.к. ширина
базы меньше их диффузионной длины пробега, то они достигнут коллекторного
перехода в количестве тем больше, чем меньше ширина базы. Однако, вследствие
дисперсии, т.е. беспорядочного теплового движения носителей, какая-то
часть дырок не доходит до КП из-за процесса рекомбинации на поверхности,
у базового вывода или в толще базы, в следствии этого в цепи базы появляется
базовый ток .
Величина, характеризующая долю тока эмиттера, достигающую коллекторного
перехода. называется коэффициентом передачи постоянного тока эмиттера
и обозначается .
Тогда ток коллектора:
Таким образом, ток через КП для случая
(для p-n-p транзистора) является суммой двух составляющих — тока дырок,
инжектированных из эмиттера в базу, и нулевого коллекторного тока .
В толщине базы протекает
и рекомбинационный ток, но в силу того, что процесс рекомбинации в базе
резко уменьшается, рекомбинационная составляющая тока базы тоже мала
.
Соответственно во внешних выводах эмиттера, базы и коллектора будут
протекать токи:
вывод эмиттера ,
вывод коллектора ,
вывод базы
где — является
рекомбинационной составляющей тока базы, величина которой зависит от
величины прямого напряжения, приложенного к ЭП. — ток неосновных
носителей заряда, величина которого от приложенного напряжения почти
не зависит.
Если p-n-p транзистор, работающий как усилитель электрических колебаний,
включен в схему так, как это показано на рис.3.4, то включение последовательно
с источником
переменного напряжения
приведет к появлению переменных составляющих тока эмиттера ,
тока коллектора и
тока базы ,
которые будут накладываться на постоянные составляющие. Так же как и
постоянные токи, протекающие через p-n-p транзистор, переменные токи
являются функциями напряжения. Если на вход подается синусоидальное
напряжение, то оно вызовет синусоидальные изменения плотности дырок
в эмиттерном и коллекторном переходах, т.е. синусоидальные изменения
переменных токов эмиттера, коллектора и базы.
Переменный ток, протекающий через ЭП, равен сумме электронного и дырочного
токов, причем для p-n-p транзистора только дырочная составляющая проходит
последовательно ЭП, обладающий малым сопротивлением и КП, обладающий
большим сопротивлением, т.е. создает условия для усиления электрических
колебаний.
Поэтому на практике для характеристики усилительных свойств транзистора
пользуются коэффициентом передачи тока эмиттера или, как его иначе называют,
коэффициентом усиления по току a, который
является отношением общего коллекторного переменного тока к общему эмиттерному
переменному току в режиме короткого замыкания коллектора на базу по
переменному току.
BC212 Datasheet (PDF)
..1. bc212 bc213 bc214.pdf Size:107K _motorola
MOTOROLAOrder this documentSEMICONDUCTOR TECHNICAL DATAby BC212/DAmplifier TransistorsBC212,BPNP SiliconBC213COLLECTORBC21432BASE1EMITTER1MAXIMUM RATINGS23BC BC
0.1. bc212lb.pdf Size:27K _fairchild_semi
BC212LBPNP General Purpose Amplifier This device is designed for general purpose amplifier application at collector currents to 100mA. Sourced from process 68.TO-9211. Emitter 2. Collector 3. BaseAbsolute Maximum Ratings* TC=25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collector-Emitter Voltage 50 VVCBO Collector-Base Voltage 60 VVEBO Emitter-Base V
0.2. bc212l.pdf Size:29K _fairchild_semi
BC212LB CETO-92 PNP General Purpose Amplifier This device is designed for general purpose amplifier applications at collector currents to 300mA.Sourced from Process 68. Absolute Maximum Ratings* TA = 25C unless otherwise notedSymbol Parameter Value Units50 VVCEO Collector-Emitter Voltage60 VVCBO Collector-Base Voltage5 VVEBO Emitter-Base VoltageCollector Curr
0.3. bc212b.pdf Size:27K _fairchild_semi
BC212BPNP General Purpose Amplifier This device is designed for general purpose amplifier application at collector currents to 100mA. Sourced from process 68.TO-9211. Collector 2. Base 3. EmitterAbsolute Maximum Ratings* TC=25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collector-Emitter Voltage 50 VVCBO Collector-Base Voltage 60 VVEBO Emitter-Base Vo
0.4. bc212b-d.pdf Size:59K _onsemi
BC212BAmplifier TransistorsPNP SiliconFeatures These are Pb-Free Devices* http://onsemi.comCOLLECTOR1MAXIMUM RATINGSRating Symbol Value Unit2BASECollector-Emitter Voltage VCEO -50 VdcCollector-Base Voltage VCBO -60 Vdc3EMITTEREmitter-Base Voltage VEBO -5.0 VdcCollector Current — Continuous IC -100 mAdcTotal Device Dissipation @ TA = 25C PD 350 mWDerate a
0.5. bc212csm.pdf Size:11K _semelab
BC212CSMDimensions in mm (inches). Bipolar PNP Device in a 0.51 0.10 Hermetically sealed LCC1 (0.02 0.004) 0.31rad.(0.012) Ceramic Surface Mount 3Package for High Reliability Applications 211.91 0.10(0.075 0.004)A0.31rad.Bipolar PNP Device. (0.012)3.05 0.13(0.12 0.005)1.40(0.055)1.02 0.10max.VCEO = 50V A =(0.04 0.004)
0.6. bc212dcsm.pdf Size:10K _semelab
BC212DCSMDimensions in mm (inches). Dual Bipolar PNP Devices in a hermetically sealed LCC2 Ceramic Surface Mount Package for High Reliability 1.40 0.152.29 0.20 1.65 0.13(0.055 0.006)(0.09 0.008) (0.065 0.005)Applications 2 314Dual Bipolar PNP Devices. A0.236 5rad. (0.009) V = 50V CEO6.22 0.13 A = 1.27 0.13I = 0.2A C(0.05
0.7. bc212l la lb bc214l.pdf Size:76K _cdil
Continental Device India LimitedAn ISO/TS 16949, ISO 9001 and ISO 14001 Certified CompanyTO-92 Plastic PackageBC212L, BC212LA, BC212LBBC214L, BC214LB, BC214LCPNP SILICON PLANAR EPITAXIAL TRANSISTORSAmplifier TransistorsDIM MIN MAXA 4,32 5,33B 4,45 5,20C 3,18 4,19D 0,41 0,55E 0,35 0,50F 5 DEGG 1,14 1,40H 1,14 1,53K 12,70 L 1.982 2.082ALL DIMENSIONS IN M.M.
Другие транзисторы… BC211A
, BC211A-10
, BC211A-16
, BC211A-6
, BC211B
, BC211C
, BC211D
, BC211E
, , BC212A
, BC212AP
, BC212B
, BC212BP
, BC212K
, BC212KA
, BC212KB
, BC212L
.
Технические характеристики
Наиболее полная и подробная информация о 2N7002, с характеристиками и графиками зависимостей, представлена в технической документации (datasheet). Согласно справочных данных, основные параметры таких устройств у всех производителей практически одинаковые. Но прогресс не стоит на месте. Вместе с новыми требованиями предъявляемыми заказчиками, ужесточением экологических стандартов, многие компании совершенствуют процессы производства с одновременным улучшением свойств своих электронных продуктов.
Например, обновлённые 2N7002 от Infineon, производят с учётом требований европейских экономических норм (RoHS), с использованием безсвинцовых (Pb-Free) и безгалогеновым (Halogen-free) технологий. Последние имеют более прочные огнеупорные пластиковые корпуса PG-SOT-23 по классификации 94V-0, внешние выводы под пайку по стандарту MIL-STD-202. Последние обладают усиленной влагозащитой согласно J-STD-020, сертификатами соответствия методике испытаний JESD22, оценены по чувствительности к электрическим разрядам (ESS class) и др.
В datasheet некоторых компаний напрямую указывается о соблюдении при производстве требований JEDEC (США). Таким образом они подчёркивают качество свой продукции и её соответствие заявленным параметрам. Почти все известные брэнды являются членами указанной ассоциации полупроводниковых технологий. Очевидно, что основные максимальные и электрические параметры у новых устройств значительно лучше, чем у первых версий 90-х годов. Именно они будут рассмотрены далее.
Максимальные значения
Максимальные характеристики 2N7002 (при ТА=25oC):
- напряжение: сток-исток (V DS) до 60 В; затвор-исток (V GS) до 40 В;
- предельный ток стока (I D) до 0.3 A; импульсный (I D pulse) до 1.2 A;
- сопротивление проводящего канала сток-исток (R DS(on)): до 3 Ом (при VGS=10 В); до 4 Ом (при VGS=4.5 В);
- рассеиваемая мощность (P tot) — 0.5 Вт;
- рабочая температура (Tj) -55…150 oC.
Электрические значения
Следует отметить, что представленные выше значения справедливы только для идеальных условий эксплуатации. Их превышение зачастую приводит к разрушению структуры транзистора, его нестабильной работе с последующим выходом из строя. С ростом температуры окружающей среды (свыше +25oC) свойства изделия ухудшаются. Поэтому при планировании использования 2N7002 необходимо предусматривать 30% запас по всем параметрам. В datasheet вместе с максимальными (абсолютными) характеристиками приводятся электрические, при которых устройство работает стабильно и долго.
Маркировка
У smd-транзистора 2N7002 буквенно-цифровая маркировка. Чаще всего на его корпусе присутствуют следующие обозначения: 7002, 12W, 7200, 702. Очень редко, особенно на старых материнских платах, такие устройства встречается с символами: K7K, 72K, 7S2.
Справка об аналогах биполярного высокочастотного pnp транзистора 2N5401.
Эта страница содержит информацию об аналогах биполярного высокочастотного pnp транзистора 2N5401 .
Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора.
Можно попробовать заменить транзистор 2N5401 транзистором 2N5400; транзистором BF491; транзистором ECG288; транзистором КТ502Е; транзистором MPSA92; транзистором MPSA93; транзистором MPSL51;
транзистором MPSL51; транзистором 2SB646; транзистором 2SB646A; транзистором 2SA637; транзистором 2SB647; транзистором 2SB647A; транзистором 2SA638; транзистором 2SA639; транзистором BC526A; транзистором BC404VI;
Аналоги
Аналог | VCEO | IC | PC | hFE | fT |
---|---|---|---|---|---|
2N5401 | 150 | 0,6 | 0,31 | 60 | 100 |
Отечественное производство | |||||
КТ6116А | 160 | 0,6 | 0,625 | 60 | 100 |
КТ502Е | 80 | 0,15 | 0,35 | 40 | 5 |
Импорт | |||||
2N5400 | 120 | 0,6 | 0,31 | 40 | 100 |
ECG288 | 300 | 0,5 | 0,625 | 40 | 50 |
MPSA92 | 300 | 0,5 | 0,625 | 25 | 50 |
MPSA93 | 200 | 0,5 | 0,625 | 30 | 50 |
MPSL51 | 100 | 0,6 | 0,31 | 40 | 60 |
BF491 | 200 | 0,5 | 0,625 | 25 | 50 |
ECG288 | 300 | 0,5 | 0,625 | 40 | 50 |
2SB646 | 80 | 0,5 | 0,9 | 60 | 70 |
2SB646A | 100 | 0,5 | 0,9 | 60 | 70 |
2SB647 | 150 | 0,5 | 0,3 | 30 | 40 |
2SB647A | 80 | 1 | 0,9 | 60 | 70 |
2SA638 | 100 | 1 | 0,9 | 60 | 70 |
BC526A | 50 | 0,2 | 0,625 | 100 | 200 |
BC404VI | 60 | 0,15 | 0,35 | 50 | 150 |
2SA1015 | 50 | 0,15 | 0,4 | 70 | 80 |
Таблица отображает аналоги с наиболее близкими техническими характеристиками, взятыми из даташип производителя.