Содержание золота, серебра, платины и палладия в Калькуляторе
Наименование изделия | Золото (Au), г | Серебро (Ag), г | Платина (Pt), г | Палладий (Pd), г |
15ВМ-16 | 3,54 | |||
15ВМ-16-004 | 0,281 | |||
1МД-70 | 0,811 | 1,761 | ||
2328 | 2,609 | 16,754 | ||
24-71 | 0,211 | |||
4,71-Б | 0,211 | |||
4-71Б | 0,127 | 0,12344 | 0,00837 | |
555Д | 0,211 | |||
6СМ | 0,856 | |||
CITIZEN | 0,08 | |||
SDC-344 | 0,08 | |||
Б3-02 | 0,36 | |||
Б3-03 | 0,06 | 0,05 | ||
Б3-04 | 0,68 | 0,127 | ||
Б3-05 | 0,93 | 0,14 | 0,04 | |
Б3-05М | 0,157 | 1,3554 | 0,000496 | |
Б3-08 | 0,06 | 0,05 | ||
Б3-09м | 0,441 | 0,211 | ||
Б3-14М | 0,13 | 0,2 | ||
Б3-18 | 0,13 | 0,206 | ||
Б3-18А | 0,1307 | 0,208 | ||
Б3-18к | 0,211 | |||
Б3-18М | 0,13 | 0,22 | ||
Б3-19м | 0,321 | 0,361 | ||
Б3-21 | 0,0492 | 0,485 | 0,000538 | |
Б3-23 | 0,853 | 0,034 | ||
Б3-24 | 0,131 | |||
Б3-26 | 0,121 | 0,481 | 0,331 | |
Б3-26А | 0,121 | 0,481 | 0,331 | |
Б3-32 | 1,02 | 1,306 | ||
Б3-33 | 0,2 | |||
Б3-34 | 0,264 | 0,142 | ||
Б3-35 | 0,026319 | 0,010188 | ||
Б3-36 | 0,0263 | 0,01 | ||
Б3-37 | 0,0444 | 0,000111 | ||
Б3-38 | 0,005 | 1,5 | ||
БЗ-02 ДО 77Г | 0,1281 | 0,12043 | 0,00837 | |
БЗ-02 С 77Г | 0,12546 | 0,13354 | 0,00172 | 0,02406 |
БЗ-05 | 0,93438 | 0,14075 | 0,04312 | |
БЗ-05М | 0,157 | 0,35545 | 0,0005 | |
БЗ-09 | 0,1218 | |||
БЗ-14М | 0,1218 | |||
БЗ-18 | 0,13 | 0,206 | ||
БЗ-18А | 0,13 | 0,207 | ||
БЗ-19М | 0,3527 | |||
БЗ-21 | 0,2782 | |||
БЗ-23 | 0,04459 | 0,00012 | ||
БЗ-24 | 0,11092 | 0,08583 | ||
БЗ-24Г | 0,04459 | 0,00012 | ||
БЗ-36 | 0,02632 | 0,01018 | ||
БЗ-37 | 0,04443 | 0,00016 | ||
БЗ-38 | 0,0059 | |||
Д3-28 | 2,147 | 14,58 | ||
импортный | 0,009 | 0,12 | ||
ИСКРА-12 | 0,3944 | 0,8388 | 0,9236 | |
Искра-122 | 0,867 | 0,8292 | ||
Искра-2210 | 0,64353 | 1,014538 | 0,03817 | |
Искра-2240 | 0,6448 | 1,0145 | 0,038 | |
Искра-555 | 2,62177 | 0,02154 | ||
КСВУ-1 | 0,153 | 2,507 | ||
М-124 | 0,0492 | 0,485 | 0,000538 | |
МК-15 | 0,101 | 0,161 | ||
МК-22 | 0,0111 | 1,634 | ||
МК-33 | 0,0562 | 0,02744 | 0,00004 | |
МК-4 | 0,067 | 0,396 | ||
МК-41 | 0,035537 | 0,17353 | ||
МК-42 | 0,014 | 1,371 | ||
МК-44 | 0,0259 | 1,613 | ||
МК-45 | 0,0065 | 0,1549 | ||
МК-46 | 0,309 | 0,253 | ||
МК-46-11 | 0,309 | 0,025 | ||
МК-51 | 0,0361 | |||
МК-52 | 0,087 | |||
МК-53 | 0,0074 | |||
МК-56 | 0,133 | 0,182 | ||
МК-59 | 0,0165578 | 2,1631 | ||
МК-60 | 0,025 | |||
МК-61 | 0,0492 | 0,485 | 0,000538 | |
МК-62 | 0,018 | |||
МК-64 | 0,018 | 0,201 | ||
МК-71 | 0,075 | 0,008 | ||
МС-1103 | 0,374 | 0,398 | ||
МТ-70 | 33,2 | 26,671 | 16,741 | 8,591 |
НС-502 | 0,08 | |||
П3-04 | 0,051 | |||
с печатающим устройством | 0,004 | 0,12 | ||
С-2 | 29,1497 | |||
С-3-09М | 0,44012 | 0,21272 | ||
С-3-15 ДО 1.3.83 ГОДА | 0,0818 | 0,41595 | 0,00008 | |
С-3-15 С 1.3.83 ГОДА | 0,21335 | 0,42434 | 0,0012 | |
С-3-22 ДО 1.3.83 ГОДА | 0,06949 | 1,87178 | ||
С-3-22 С 1.3.83 ГОДА | 0,0154 | 1,22021 | ||
С3-07 | 0,066 | 0,0576 | ||
С3-15 | 0,213 | 0,414 | 0,0008 | |
С3-22 | 0,06634 | 1,87177 | ||
С3-27 | 0,016 | 0,076 | ||
С3-27А | 0,017 | 0,026 | ||
С3-33 | 0,061 | 0,069 | ||
С5-07 | 0,371 | 3,091 | 0,032 | |
С5-11 | 4,182 | 5,088 |
Самые просматриваемые
ПТК-11Д (Приставка)
М-47 (Анеморумбометр)
С1-118А (Осциллограф)
Panasonic (Аппарат факсимильный)
КСП-4 (Громкоговоритель)
Samsung, LG, Philips, NTT и др. (Монитор)
CD-ROM (Накопитель)
Р-311 (Радиоприемник)
ДП-5В (Дозиметр)
Романтик-201 (Магнитофон)
Р-35 (Ретранслятор)
Д303 (Выключатель)
С1-114 (Осциллограф)
МТ-70 (Калькулятор)
Вега 323 (Радиоприемник)
ГАЗ-53 (Автомобиль)
ПГ-5 (Холодильное оборудование)
Р-123М (Станция тропосферная)
Г4-102 (Генератор)
Г3-33 (Генератор)
Какие существуют аналоги
Для некоторых приборов серии 142 существуют полные зарубежные аналоги:
Микросхема К142 | Зарубежный аналог |
КРЕН12 | LM317 |
КРЕН18 | LM337 |
КРЕН5А | (LM)7805C |
КРЕН5Б | (LM)7805C |
КРЕН8А | (LM)7806C |
КРЕН8Б | (LM)7809C |
КРЕН8В | (LM)78012C |
КРЕН6 | (LM)78015C |
КРЕН2Б | UA723C |
Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему. Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует. Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.
Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5). Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г. И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.
Дополнение от 25.02.16
Например, к вам в руки попал блок питания от роутера с «переменкой» 9-12 вольт на выходе. Если размеры позволяют, то почему бы не встроить стабилизатор внутрь?
Корпус надо аккуратно расколоть по шву с помощью ножа и ощутимого постукивания по ножу. Электронику можно всю сделать на плате, но я не стал заморачиваться и спаял «навесом», кое-где прихватив термоклеем. Светодиод — по желанию. Обратно половинки склеиваются суперклеем.
Иногда приходится заменять штекер. Наиболее распространены 5,5/2,1 мм (наружный/внутренний диаметр) и 5,5/2,5 мм.
По возможности лучше брать те, что справа, с желтым изолятором. Они сделаны не так халтурно.
Технические характеристики
Начнём знакомство с техническими характеристиками микросхемы крен8б с рассмотрения предельно допустимых параметров устройства
Знание этих параметров важно при проектировании новых электронных устройств. Если их значения выйдут за пределы нормы, устройство может выйти из строя
- предельно допустимое напряжение на входе – 35 В;
- максимально возможный выходной ток при Тк = -25…+75ОС – 1,5 А;
-
наибольшая рассеиваемая мощность на радиаторе:
- при Тк = -45…+70ОС – 8 Вт;
- при Тк +75ОС – 5 Вт;
- мощность без радиатора 1,5 Вт;
- температура хранения — -55 …+150 ОС.
Теперь можно детально рассмотреть остальные характеристики микросхемы. Значения вех параметров были измерены при температуре +25 ОС. Остальные условия проведения тестирования можно найти в колонке «Условия тестирования» приведённой ниже таблицы.
Электрические характеристики стабилизатора крен8б (при Т = +25 оC) | |||||
Название параметра | Обозн | Условия тестирования | мин | макс | Ед. изм |
Напряжение на выходе | Uвых | Uвх=20 В; Iвых=10мA | 11,64 | 12,36 | В |
К-т нестабильности по напряжению | Кui | Uвх=20 В; Iвых=10мA | 0,05 | %/В | |
Температурный к-т нестабильности напряжения | α uo |
Uвх=20 В; Iвых=10мA
Т = -45…+85ОС |
0,02 | %/В | |
К-т нестабильности по току | Кio | 1,33 | %/А | ||
Наименьшее падение напряжения | Uвх = Uвых + 2,5 В | ≤ 2,5 | В | ||
Потребляемый ток | Uвх = 35 В | ≤ 10 | мА | ||
Дрейф выходного напряжения за 500 часов |
Т = +100ОС
Iвых=0,5 A |
≤ 1 | % | ||
К-т сглаживания пульсаций | Uвх=20 В;Iвых=10мA | ≥30 | дБ |
Кроме приведённых выше сведений в технической документации имеются рекомендации по применению:
- на выход КР142ЕН8Б может быть подано напряжение величиной не более 15 В, при условии, если напряжение на входе отсутствует;
- монтаж стабилизатора можно проводить не более двух раз, а демонтаж до одного;
- наименьшая резонансная частота – 8 кГц.
Подключать КР142ЕН8Б рекомендуется по стандартной трёхвыводной схеме подключения стабилизаторов.
Стабилизатор содержит 0,0178 грамм золота и 0,0376 грамм серебра.
Дополнение от 05.06.16
Бывают случаи, когда нужно нестандартное напряжение — например, 8,7 вольт.
Применив L7808 и кремниевый диод (Uпр = 0,7 В), на выходе можно получить искомые 8,7 вольт. Включая несколько диодов последовательно, можно еще больше поднять напряжение: для двух кремниевых это будет уже почти плюс 1,4 вольта к тому, на что запрограммирован сам стабилизатор. Диод (или диоды) надо выбирать соразмерно потребляемому нагрузкой току — для мелочи пойдет и КД522 (до 100 мА), а для чего покрупнее — хотя бы и 1N4001 (1 А).
Кремниевый диод добавляет 0,6-0,7 вольт, германиевый — 0,3-0,4 В. Можно с успехом их компоновать, максимальный ток такого самодельного стабилизатора определяется максимальным током самого хилого элемента.
Нравится
142ЕН1, 142ЕН2, 142ЕН3, 142ЕН4
Требуемое выходное напряжение устанавливают переменным резистором R2.
Пиковое значение тока через батарею GB1 зависит от сопротивления резистора R3 при указанном на схеме сопротивлении 1 Ом — 0,6 А. Появилась возможность снабдить каждую плату сложного устройства собственным стабилизатором напряжения СН , а значит, использовать для его питания общий нестабилизированный источник.
В момент включения питания начинает заряжаться конденсатор СЗ, поэтому транзистор открыт и шунтирует нижнее плечо делителя R1R2. Обычно входной конденсатор не нужен, если корпус стабилизатора находится в пределах 15 см от входной фильтрирующей емкости,в противном случае он необходим.
Если исходить из того, что напряжение на эмиттерном переходе транзистора VT1 и прямое напряжение диода VD1 примерно одинаковы, то распределение тока между микросхемой DA1 и регулирующим транзистором зависит от отношения значений сопротивления резисторов R2 и R1. Благодаря большому входному сопротивлению ОУ становится возможным увеличить сопротивление делителя R1R2 в десятки раз по сравнению с СН с типовым включением микросхемы DA1 и, тем самым, значительно уменьшить потребляемый им ток.
При эксплуатации устройства с током в нагрузке менее 0. Двуполярный СН на основе однополярной микросхемы можно выполнить по схеме, изображенной на рис. По мере увеличения выходного тока это падение напряжения возрастает, и когда оно достигает 0, В момент включения питания начинает заряжаться конденсатор СЗ, поэтому транзистор открыт и шунтирует нижнее плечо делителя R1R2.
Другие темы
Все системы защиты от перегрузок остаются полностью работоспособными даже если вход регулирования отключен. СН со ступенчатым включением. СН, защищенный от повреждения разрядным током конденсаторов. При этом микросхема поддерживает выходное напряжение на уровне, определяемом ее типом: при увеличении напряжения ее регулирующий элемент закрывается, снижая тем самым протекающий через нее ток, и падение напряжения на цепи R2VD2 уменьшается.
В дополнение может быть добавлен выходной конденсатор для сглаживания переходных процессов. Вашему вниманию предлагается несколько необычный способ получения стабильных значений напряжений, 3-выводные стабилизаторы для которых либо не существуют в природе, либо еще мало распространены. В литературе предлагается немало способов, как найти выход из данной ситуации. Позади указанных в таблице обозначений также могут быть буквы и цифры, указывающие на те или иные конструктивные или эксплуатационные особенности микросхемы. Общее число элементов стабилизатора было довольно значительным, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне.
Все системы защиты от перегрузок остаются полностью работоспособными даже если вход регулирования отключен. Последние сообщения. Если же это напряжение, наоборот, возрастает, процесс протекает в противоположном направлении и равенство выходных напряжений также восстанавливается. Проверенный стабилизатор 12 вольт за 10 рублей для LED/светодиодов и ДХО
Регулируемый блок питания своими руками
Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.
Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ
Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.
Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.
А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.
Схема регулируемого блока питания с защитой от КЗ на LM317
Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.
Печатная плата регулируемого блока питания на регуляторе напряжения LM317
Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.
Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.
А теперь самое интересное… Испытания блока питания на прочность.
Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.
Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.
Схема подключения вентилятора к блоку питания
Что будет с блоком питания при коротком замыкании?
При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.
Радиодетали для сборки регулируемого блока питания на LM317
- Стабилизатор напряжения LM317
- Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
- Конденсатор С1 4700mf 50V
- Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
- Переменный резистор Р1 5К
- Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками
Транзистор Крен8Б: особенности и состав
Основной особенностью транзистора Крен8Б является его способность усиливать электрические сигналы и контролировать ток, проходящий через его электроды. Благодаря этим свойствам, он позволяет создавать мощные и стабильные электронные схемы.
Состав транзистора Крен8Б включает следующие драгметаллы:
- Металлическая основа из кремния;
- Электроды из золота, палладия или платины;
- Защитные покрытия из металлов, таких как никель или серебро.
Драгметаллы используются в транзисторе Крен8Б из-за своей высокой электропроводности и стабильности. Они также обладают хорошими механическими свойствами, что позволяет изготавливать электроды с высокой точностью и долговечностью.
Транзистор Крен8Б отличается высокими характеристиками и может работать в суровых условиях. Он обладает высокой степенью стабильности, малыми размерами и низким энергопотреблением. Благодаря этим свойствам, он широко применяется в радио-, телекоммуникационной и других высокотехнологичных отраслях.
Принципиальная схема
Схема низкочастотного усилителя на микросхеме КР142ЕН12А описана в Л.1. Усилительные свойства микросхемы реализованы путем подачи низкочастотного входного сигнала на вывод регулировки выходного напряжения стабилизатора. На месте, где в типовом включении должен быть регулировочный резистор, установлен каскад предварительного усиления на транзисторе VT1.
Его режим по постоянному току устанавливается таким, чтобы в отсутствие входного сигнала напряжение на выходе стабилизатора равнялось половине напряжения питания. В качестве нагрузки, через резистор, ограничивающий ток, подключается динамик. Низкочастотный сигнал, поступающий на базу транзистора приводит к изменению напряжения на управляющем входе стабилизатора, а это приводит к изменению напряжения на его выходе.
Рис. 1. Принципиальная схема домофона на микросхеме КР142ЕН12А.
Абонентские блоки неравноценны, поэтому блок с динамиком В1 назовем выносным, а блок с динамиком В2, схемой усилителя и источником питания, — стационарным.
Управление осуществляется двойным сигнальным тумблером с нейтралью. Это старый тумблер, постоянно находящийся в нейтральном положении, и его можно переключить в одно из крайних положений. Но в крайних положениях он не фиксируется, — рычажок при отпускании возвращается в нейтральное положение. На схеме он показан в положении «говорить», в противоположном положении — «слушать».
В показанном на схеме положении («говорить») сигнал от стационарного динамика-микрофона В2 поступает на вход УНЧ, и сигнал с выхода УНЧ поступает на выносной динамик В1.
В противоположном показанному на схеме положении («слушать») сигнал от выносного динамика-микрофона В1 поступает на вход УНЧ, и сигнал с выхода УНЧ поступает на стационарный динамик В2. В нейтральном положении оба динамика отключены. Схема не работает. Переменный резистор R5 служит для регулировки чувствительности.
О стабилизаторах напряжения и стабилизаторах тока «Крен» привет
В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье. Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А. Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А — это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.
Генератор пилообразного напряжения со стабилизатором тока
От схем стабилизаторов тока пора перейти к применению стабилизаторов в генераторах пилообразного напряжения. Тут всё достаточно просто, необходимо вместо зарядного (разрядного) резистора вставить в схему стабилизатор тока. Для примера возьмём стабилизатор тока с диодным смещением и добавим его в схему простого генератора пилообразного напряжения. Получившаяся схема изображена ниже
Схема генератора пилообразного (линейно растущего) напряжения со стабилизатором тока.
Данная схема состоит из стабилизатора тока на транзисторе VT1, стабилитроне VD1 и резисторах R1, R2, а также разрядного транзистора VT2 и конденсатора C1. Схемы генераторов пилообразного напряжения позволяют получить коэффициент нелинейности ξ ≤ 10 %, а коэффициент использования напряжения ε ≈ 0,9. Как же работает такая схема? Как известно VT1. То есть дифференциальное сопротивление коллектора будет очень высоким
в случае стабилизатора тока rK ≈ 0,5…1 МОм.
После подачи питания Епит в схему, конденсатор C1 начинает заряжаться постоянным током IС ≈ IE = const
, которой обеспечивается стабильным напряжением UST за счёт стабилитрона VD1
Таким образом, конденсатор зарядится до напряжения
которое будет являться выходным напряжением данной схемы генератора. После того как на вход схемы (базовый вывод VT2) приходит положительный импульс (UBX > UBbIX) транзистор VT2 насыщается и конденсатор C1 разряжается
Амплитуду выходного напряжения можно определить по следующей формуле
Коэффициент нелинейности будет равен
Таким образом, исходя из вышесказанного, можно сделать вывод, что данный генератор при работе на высокоомную нагрузку обеспечивает небольшой коэффициент нелинейности и большой коэффициент использования напряжения, который растёт с уменьшением напряжения стабилизации стабилитрона, а также обеспечивает большой диапазон длительности рабочего хода и небольшое время обратного хода.
Одним из недостатков данного типа генератора является то, что необходимо иметь запускающий импульс со значительным уровнем напряжения (UBX > UBbIX), а также транзисторы с разными типами проводимости.
В отличии от генератора линейно растущего напряжения, генератор линейно падающего напряжения можно собрать на транзисторах одного типа проводимости, что иногда имеет некоторое преимущество.
Генератор пилообразного (линейно падающего) напряжения со стабилизатором тока.
Расчёт номиналов элементов данной схемы ведётся идентично генератору линейно растущего напряжения.