Транзистор кт815 (а)

Транзистор кт817: характеристики, цоколевка, параметры, аналоги - знаток pc

Биполярный транзистор BDW83C — описание производителя. Основные параметры. Даташиты.

Наименование производителя: BDW83C

Тип материала: Si

Полярность: NPN

Максимальная рассеиваемая мощность (Pc): 150
W

Макcимально допустимое напряжение коллектор-база (Ucb): 100
V

Макcимально допустимое напряжение коллектор-эмиттер (Uce): 100
V

Макcимально допустимое напряжение эмиттер-база (Ueb): 5
V

Макcимальный постоянный ток коллектора (Ic): 15
A

Предельная температура PN-перехода (Tj): 150
°C

Граничная частота коэффициента передачи тока (ft): 1
MHz

Статический коэффициент передачи тока (hfe): 750

Корпус транзистора:

BDW83C
Datasheet (PDF)

 ..1. Size:222K  inchange semiconductor bdw83 bdw83a bdw83b bdw83c.pdf

isc Silicon NPN Darlington Power Transistor BDW83/A/B/CDESCRIPTIONCollector Current -I = 15ACHigh DC Current Gain-h = 750(Min)@ I = 6AFE CComplement to Type BDW84/A/B/CMinimum Lot-to-Lot variations for robust deviceperformance and reliable operationAPPLICATIONSDesigned for general purpose amplifier and low speedswitching applicationsABSOLUTE MAXIMUM RATINGS(T =

 ..2. Size:218K  inchange semiconductor bdw83c.pdf

isc Silicon NPN Darlington Power Transistor BDW83CDESCRIPTIONCollector Current -I = 15ACHigh DC Current Gain-h = 750(Min)@ I = 6AFE CComplement to Type BDW84CMinimum Lot-to-Lot variations for robust deviceperformance and reliable operationAPPLICATIONSDesigned for general purpose amplifier and low speedswitching applicationsABSOLUTE MAXIMUM RATINGS(T =25)a

 9.1. Size:67K  st bdw83 bdw84.pdf

BDW83CBDW84CCOMPLEMENTARY SILICON POWER DARLINGTONTRANSISTORS BDW83C IS A SGS-THOMSON PREFERREDSALESTYPE COMPLEMENTARY PNP — NPN DEVICES HIGH CURRENT CAPABILITY FAST SWITCHING SPEED HIGH DC CURRENT GAIN APPLICATIONS 3 LINEAR AND SWITCHING INDUSTRIAL2EQUIPMENT1DESCRIPTION TO-218The BDW83C is a silicon epitaxial-base NPNpower monolithic Darlington transis

 9.2. Size:220K  inchange semiconductor bdw83d.pdf

isc Silicon NPN Darlington Power Transistor BDW83DDESCRIPTIONCollector Current -I = 15ACHigh DC Current Gain-h = 750(Min)@ I = 6AFE CComplement to Type BDW84DMinimum Lot-to-Lot variations for robust deviceperformance and reliable operationAPPLICATIONSDesigned for general purpose amplifier and low speedswitching applicationsABSOLUTE MAXIMUM RATINGS(T =25)a

 9.3. Size:123K  inchange semiconductor bdw83 83a 83b 83c 83d.pdf

Inchange Semiconductor Product Specification Silicon NPN Power Transistors BDW83/83A/83B/83C/83D DESCRIPTION With TO-3PN package Complement to type BDW84/84A/84B/84C/84D DARLINGTON High DC current gain APPLICATIONS For use in power linear and switching applications. PINNING PIN DESCRIPTION1 Base Collector;connected to 2 mounting base Fig.1 simplified ou

Другие транзисторы… BDW74
, BDW74A
, BDW74B
, BDW74C
, BDW74D
, BDW83
, BDW83A
, BDW83B
, 2SD669
, BDW83D
, BDW84
, BDW84A
, BDW84B
, BDW84C
, BDW84D
, BDW91
, BDW92
.

Цоколевка

КТ826А представляет собой германиевый транзистор с пластмассовым корпусом. Он имеет трехэлементную цоколевку, состоящую из трех выводов, размещенных на одной стороне корпуса. Каждый вывод выполняет свою функцию и имеет свою обозначение:

  1. База (B) — обозначена символом «B». Этот вывод используется для управления транзистором и подключается к управляющей цепи.
  2. Эмиттер (E) — обозначен символом «E». Этот вывод является выходом транзистора и подключается к потребителю тока или нагрузке.
  3. Коллектор (C) — обозначен символом «C». Этот вывод также является выходом транзистора и подключается к потребителю тока или нагрузке.

Следует отметить, что при монтаже транзистора необходимо правильно подключить каждый вывод на печатную плату или в проводниковую систему для обеспечения корректной работы устройства.

Биполярный транзистор: внешний вид, составные элементы, конструкция корпуса — кратко

Сразу стоит определиться, что биполярный транзистор (bipolar transistor) создан для работы в цепях постоянного тока, где и используется. Сократим его название до БТ.

На фотографии ниже показал насколько разнообразные формы он имеет. А ведь этот небольшой ассортимент мной высыпан из одной маленькой коробочки.

Транзисторный корпус может быть изготовлен из пластмассы или металла в виде параллелепипеда, цилиндра, таблетки различной величины. Общими элементами являются три контактных штыря, созданные для подключения к электрической схеме.

Эти выводы необходимо различать в технической документации, правильно подключать при монтаже. Поэтому их назвали:

  1. Э (E) — эмиттер;
  2. К (C) — коллектор;
  3. Б (B) — база.

Буквы в скобках используются в международной документации.

Основной метод соединения БТ в электрических схемах — пайка, хотя допускаются и другие.

Габариты корпуса и контактных выводов зависят от мощности, которую способен коммутировать этот модуль. Чем выше проектная нагрузка, тем большие размеры вынуждены создавать производители для обеспечения надежной работы и отвода опасного тепла.

Общеизвестно, что полупроводниковые переходы не способны выдерживать высокий нагрев — они банально перегорают. Поэтому все мощные корпуса выполняются из металла и снабжаются теплоотводящими радиаторами.

В особо ответственных узлах для них дополнительно создается принудительный обдув струями воздуха. Этим приемом значительно повышается надежность работы системных блоков компьютеров, ноутбуков, сложной электронной техники.

Любой БТ состоит из трех полупроводниковых переходов p и n типа, как обычный диод. Только у диода их меньше: всего два. Он способен пропускать ток всего в одну сторону, а в противоположную — блокирует.

Bipolar transistor создается по одной из двух схем соединения полупроводниковых элементов:

  1. p-n-p, называемую прямым включением;
  2. n-p-n — обратным.

При обозначении на схемах их рисуют одинаково, но с небольшими отличиями вывода эмиттера:

  1. прямое направление: стрелка нацелена на базу;
  2. обратное — стрелка показывается выходом из базы наружу элемента.

Указатель стрелки эмиттера показывает положительное направление тока через полупроводниковый переход.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Преимущества и недостатки

Транзистор КТ826А обладает рядом преимуществ и недостатков, которые важно учитывать при его использовании:

  • Преимущества:
    • Широкий диапазон рабочих напряжений, что позволяет использовать транзистор в различных электронных схемах.
    • Высокая надежность работы и стабильность параметров в течение длительного времени.
    • Относительно низкие затраты на приобретение транзистора.
    • Простая цоколевка и удобная компоновка выводов, что облегчает процесс монтажа.
  • Недостатки:
    • Низкая мощность транзистора, что ограничивает его применение в схемах с большими нагрузками.
    • Относительно низкая скорость работы, что может замедлять процесс коммутации сигналов.
    • Ограниченный выбор аналогов и совместимых схем для данного транзистора.
    • Повышенное тепловыделение при работе на максимальных нагрузках, требующее обеспечения эффективного охлаждения.

При выборе транзистора КТ826А для конкретной схемы или проекта важно учесть данные преимущества и недостатки, а также задачи, которые нужно решить. Только тщательный анализ позволит принять обоснованное решение и достичь желаемых результатов

P-канальные MOSFET транзисторы одноканальные

SOT-23

-20 В

P-Channel, -20V, 2.6A, 135 mOhm, 2.5V Drive capable, SOT-23

P-Channel, -20V, 4.3A, 54 mOhm, 2.5V Drive capable, SOT-23

-30 В

P-Channel, -30V, 1A, 150 mOhm, SOT-23

P-Channel, -30V, 3.6A, 64 mOhm, SOT-23

PQFN 2×2 мм, 3×3 мм

-20 В

P-Channel, -20V, 8.5A, 31 mOhm, 2.5V Capable PQFN2x2

-30 В

P-Channel, -30V, 10A, 15 mOhm, PQFN33

P-Channel, -30V, 8.5A, 37 mOhm, PQFN2x2

SO-8 и TSOP-6

-30 В

IRFTS9342TRPBF

P-Channel, -30V, 6A, 39 mOhm, TSOP-6

P-Channel, -30V, 5.4A, 59 mOhm, SO-8

P-Channel, -30V, 7.5A, 19 mOhm, SO-8

P-Channel, -30V, 9A, 17.5 mOhm, SO-8

P-Channel, -30V, 10A, 12 mOhm, SO-8

P-Channel, -30V, 15A, 7.2 mOhm, SO-8

P-Channel, -30V, 16A, 6.6 mOhm, SO-8

P-Channel, -30V, 21A, 4.6 mOhm, SO-8

PQFN 5×6мм

-30 В

P-Channel, -30V, 23A, 4.6 mOhm, PQFN5X6

Аналоги

Для замены подойдут транзисторы кремниевые планарно-эпитаксиальные, NPN, составные, импульсные. Разработаны для применения в преобразователях напряжения, источниках вторичного электропитания, переключающих устройствах и других схемах аппаратуры широкого применения.

Отечественное производство

Модель PC * UCB UCE UEB IC TJ fT CC, pF hFE Корпус
TIP122 65 100 100 5 5 150 300 ≥ 1000 TO-220
КТ716А/Б 60 100/80 100/80 5 8/10 150 6 150 от 500 до 750 TO-220, TO-66
КТ8116А/Б 65 100 5 4 1000 TO-220
КТ8116А/Б 25 100 3 4 1000 DPAK
КТ8141А 60 100 100 8 7 750 TO-220
КТ8147А/Б 100 700/500 8 10 5 5
КТ8158В 125 100 100 5 12 5 2500 TO-218

Зарубежное производство

Модель PC * UCB UCE UEB IC TJ hFE Корпус
TIP122 65 100 100 5 5 150 ≥ 1000 TO-220
NTE261 65 100 100 5 8 150 1000 TO-220
NTE263 65 100 100 5 10 150 1000 TO-220
RCA122 65 100 100 5 8 150 1000 TO-220
SE9302 70 100 100 5 10 150 1000 TO-220
TIP102 80 100 100 5 8 150 1000 TO-220
TIP132 70 100 100 5 8 150 1000 TO-220
WW263 65 100 100 5 10 150 1000 TO-220
2N6045G 75 100 100 5 8 150 1000 TO-220AB
2SD498 75 100 100 5 8 150 1000 TO-220
3DA122 65 100 100 5 5 150 1000 TO-220
3DA142T 80 100 100 5 10 150 1000 TO-220
3DD122 65 100 100 5 5 150 1000 TO-220
BDW93C 80 100 100 5 12 150 15000 TO-220
CFD811 65 110 100 5 8 150 1000 TO-220FP
HEPS9151 65 100 100 5 8 150 1000 TO-220
HP102 80 100 100 5 8 150 1000 TO-220
HP122 65 100 100 5 5 150 1000 TO-220
HP142T/TS 80/70 100 100 5 10/8 150 1000 TO-220
MJE6045/T 75 100 100 5 8 150 1000 TO-220 TO-220AB

Примечание: данные в таблицах взяты из даташит производителя.

Обзор

Основные характеристики транзистора КТ826А:

Максимальный коллекторный ток (Icмакс) 100 мА
Максимальное напряжение коллектор-эмиттер (Uкэмакс) 45 В
Максимальная мощность потери (Pдоп) 300 мВт
Коэффициент усиления (h21e) не менее 100

Транзистор КТ826А имеет трехэлементную цоколевку типа ТО-92, что обеспечивает удобное подключение к схеме. Он может работать в широком диапазоне температур от -55°С до +150°С.

Основное применение транзистора КТ826А — усиление и коммутация электрических сигналов в радиоэлектронных устройствах, включая радиоприемники, усилители мощности и другие устройства.

В заключение, транзистор КТ826А является надежным и универсальным элементом электроники, который можно применять в различных устройствах. Его высокие характеристики и доступная цена делают его отличным выбором для проектов любого уровня сложности.

Технические параметры

Основные параметры транзистора КТ826А:

  • Максимальная коллекторная-базовая напряжение (Uкб): 60 В;
  • Максимальная коллекторно-эмиттерная напряжение (Uкэ): 30 В;
  • Максимальный континуальный коллекторный ток (Iк): 20 А;
  • Максимальный пиковый коллекторный ток (Iкп): 40 А;
  • Максимальная мощность потери в кристалле (Pк): 175 Вт;
  • Тепловое сопротивление от кристалла до корпуса (Rthjc): 0,33 °C/Вт.

Также важно отметить некоторые дополнительные характеристики:

  • Максимальная рабочая частота (fmax): 30 МГц;
  • Усиление по току (hfe): 10-20;
  • Температурный диапазон работы: -65…+200 °C;
  • Корпус: металлокерамический;
  • Масса: не более 15 г.

Технические параметры транзистора КТ826А обеспечивают его широкое применение в различных радиолюбительских и профессиональных устройствах.

Аудио MOSFET транзисторы класса D

Все корпуса

Наим-е

Корпус

Напряжение пробоя

Rds(on) тип. (10 В)

Ток стока (25°C)

Заряд затвора

Класс

IRFI4024H-117P

5-pin TO-220

55V

48 mOhm

11 A

8.9 nC

Consumer

IRFI4212H-117P

5-pin TO-220

100V

58 mOhm

11 A

12 nC

Consumer

IRFI4019H-117P

5-pin TO-220

150V

80 mOhm

8.7

13 nC

Consumer

IRFI4020H-117P

5-pin TO-220

200V

80 mOhm

9.1 A

19 nC

Consumer

IRF6665TRPBF

DirectFET SH

100V

53 mOhm

19 A

8.7 nC

Consumer

IRF6645TRPBF

DirectFET SJ

100V

28 mOhm

25 A

14 nC

Consumer

IRF6644TRPBF

DirectFET MN

100V

10 mOhm

60 A

35 nC

Consumer

IRF6775MTRPBF

DirectFET MZ

150V

56 mOhm

28 A

25 nC

Consumer

IRF6785MTRPBF

DirectFET MZ

200V

85 mOhm

15 A

26 nC

Consumer

IRF6648TRPBF

DirectFET MN

60V

5.5 mOhm

86 A

36 nC

Consumer

IRF6668TRPBF

DirectFET MZ

80V

12 mOhm

55 A

22 nC

Consumer

IRF6646TRPBF

DirectFET MN

80V

7.6 mOhm

68 A

36 nC

Consumer

IRFB4212PBF

TO-220

100V

72.5 mOhm

18 A

15 nC

Industrial

IRFB4019PBF

TO-220

150V

80 mOhm

17 A

13 nC

Consumer

IRFB5615PBF

TO-220

150V

32 mOhm

35 A

26 nC

Industrial

IRFB4228PBF

TO-220

150V

12 mOhm

83 A

72 nC

Industrial

IRFB4020PBF

TO-220

200V

80 mOhm

18 A

18 nC

Consumer

IRFB4227PBF

TO-220

200V

19.7 mOhm

65 A

70 nC

Industrial

IRFB5620PBF

TO-220

200V

60 mOhm

25 A

25 nC

Industrial

IRFP4668PBF

TO-247

200V

8 mOhm

130 A

161 nC

Industrial

IRFB4229PBF

TO-220

250V

38 mOhm

46 A

72 nC

Industrial

IRFP4768PBF

TO-247

250V

14.5 mOhm

93 A

180 nC

Industrial

Транзистор

Буквально сразу после появления полупроводниковых приборов, скажем, транзисторов, они стремительно начали вытеснять электровакуумные приборы и, в частности, триоды. В настоящее время транзисторы занимают ведущее положение в схемотехнике.

Начинающему, а порой и опытному радиолюбителю-конструктору, не сразу удаётся найти нужное схемотехническое решение или разобраться в назначении тех или иных элементов в схеме. Имея же под рукой набор «кирпичиков» с известными свойствами гораздо легче строить «здание» того или другого устройства.

Не останавливаясь подробно на параметрах транзистора (об этом достаточно написано в современной литературе, например, в ), рассмотрим лишь отдельные свойства и способы их улучшения.

Одна из первых проблем, возникающих перед разработчиком, — увеличение мощности транзистора. Её можно решить параллельным включением транзисторов (рис.1). Токовыравнивающие резисторы в цепях эмиттеров способствуют равномерному распределению нагрузки.

Оказывается, параллельное включение транзисторов полезно не только для увеличения мощности при усилении больших сигналов, но и для уменьшения шума при усилении слабых. Уровень шумов уменьшается пропорционально корню квадратному из количества параллельно включённых транзисторов.

Защита от перегрузки по току наиболее просто решается введением дополнительного транзистора (рис.2). Недостаток такого самозащитного транзистора — снижение КПД из-за наличия датчика тока R. Возможный вариант усовершенствования показан на рис.3. Благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, а значит, и рассеиваемую на нём мощность.

Составной транзистор (рис. 4) имеет повышенное выходное сопротивление и значительно уменьшенный эффект Миллера благодаря каскодному включению полевого и биполярного транзисторов.

За счёт полной развязки второго транзистора от входа и питанию стока первого транзистора напряжением, пропорциональным входному, составной транзистор, изображённый на рис.5, имеет ещё более высокие динамические характеристики.

Единственное условие реализации такого транзистора — более высокое напряжение отсечки второго транзистора. Входной транзистор можно заменить на биполярный.

Одна из особенностей транзисторного ключа при изменяющейся нагрузке — изменение времени выключения транзистора. Чем больше насыщение транзистора при минимальной нагрузке, тем больше время выключения. Избежать глубокого насыщения можно путём предотвращения прямого смещения перехода база-коллектор. Наиболее простая реализация этой идеи с помощью диода Шоттки представлена на рис.6. На рис.7 изображён более сложный вариант — схема Бейкера.

https://youtube.com/watch?v=D60LaX9Fza0

Графические данные

Рис. 1. Типичные зависимости коэффициента усиления по постоянному току hFE от коллекторной нагрузки IC.

Зависимости сняты при нескольких значениях температуры коллектора TC в режиме повторяющихся импульсов длительностью tp = 300 мкс со скважностью (duty cycle) ˂ 2%. При этом коллекторное напряжение UCE = 3 В

Рис. 2. Зависимости напряжения насыщения транзистора UCE(sat) от коллекторной нагрузки IC.

Зависимости сняты при нескольких значениях температуры коллектора TC в режиме повторяющихся импульсов длительностью tp = 300 мкс со скважностью (duty cycle) ˂ 2%. Ток базы IB соотносится с током коллектора ICкак 1:100

Рис. 3. Зависимости напряжения насыщения базы UBE(sat) от коллекторной нагрузки IC.

Зависимости сняты при нескольких значениях температуры коллектора TC в режиме повторяющихся импульсов длительностью tp = 300 мкс со скважностью (duty cycle) ˂ 2%. Ток базы IB соотносится с током коллектора ICкак 1:100

Рис. 4. Зависимости входной Cib и выходной Cob емкостей от обратных напряжений, приложенных к коллекторному и базовому p-n переходам UCB и UEB.

Зависимости сняты при частоте приложенных напряжений f = 0,1 МГц.

Рис. 5. Ограничение предельной рассеиваемой мощности PC транзистора при возрастании температуры коллекторного перехода TC.

Рис. 6. Области безопасной работы транзистора.

Области безопасной работы ограничиваются:

  • по напряжению — величиной напряжения коллектор-эмиттер, чреватой невосстановимым пробоем п/п структуры транзистора;
  • по величине тока – предельным значением тока в цепи коллектор-эмиттер, при котором происходит локальный перегрев и прожигание п/п структуры;
  • по величине рассеиваемой мощности – предельным значением, при котором в результате перегрева параметры транзистора безвозвратно изменяются в сторону их ухудшения.

Графические характеристики сняты при различных значениях предельной импульсной мощности в режимах с однократными неповторяющимися импульсами тока длительностей 100 мкс, 500 мкс, 1 мс, 5 мс, а также при постоянном токе (на графике обозначен как DC).

Маркировка полевых SMD транзисторов

Маркировка Тип прибора Маркировка Тип прибора
       
6A MMBF4416 C92 SST4392
6B MMBF5484 C93 SST4393
6C MMBFU310 H16 SST4416
6D MMBF5457 I08 SST108
6E MMBF5460 I09 SST109
6F MMBF4860 I10 SST110
6G MMBF4393 M4 BSR56
6H MMBF5486 M5 BSR57
6J MMBF4391 M6 BSR58
6K MMBF4932 P01 SST201
6L MMBF5459 P02 SST202
6T MMBFJ310 P03 SST203
6W MMBFJ175 P04 SST204
6Y MMBFJ177 S14 SST5114
B08 SST6908  S15  SST5115
B09 SST6909  S16 SST5116
B10 SST6910  S70 SST270
C11 SST111  S71 SST271
C12 SST112  S74  SST174
C13 SST113  S75 SST175
C41 SST4091  S76 SST176
C42 SST4092  S77 SST177
C43 SST4093  TV MMBF112
C59 SST4859  Z08 SST308
C60 SST4860  Z09 SST309
C61 SST4861  Z10 SST310
C91 SST4391    

Модификации (версии) транзистора

Тип PC UCB UCE UEB IC TJ hFE fT Cob NF UCE(sat) Корпус Примечание
C1815 0,625 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
2SC1815 0,2 60 50 5 0,15 150 130…400 ≥ 80 ≤ 0,25 SOT-23 Группы по hFE: L/HМаркировка: HF
2SC1815 0,2 60 50 5 0,15 125 130…400 ≥ 80 ≤ 0,25 SOT-23 Группа L по hFE: маркировка: HFL.Группа H маркировка: HF
2SC1815 0,4 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3,5 1…10 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
2SC1815(L) 0,4 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3,5 ≤ 6 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
2SC1815LT1 0,225 60 50 5 0,15 150 70…700 ≤ 0,3 SOT-23 Маркировка: L6
2SC1815M (BR3DG1815M) 0,3 60 50 5 0,15 150 25…700 ≥ 80 ≤ 3,5 1…10 ≤ 0,25 SOT-23 Группы по hFE: O/Y/GR/BL Маркировка: HHFO, HHFY, HHFG, HHFB
2SC1815 M 0,3 45 40 5 0,1 125 70…700 ≥ 80 ≤ 3,5 ≤ 0,4 TO-92B Группы по hFE: O/Y/GR/BL
C1815 0,2 60 50 5 0,15 150 130…400 ≥ 80 ≤ 0,25 SOT-23 Группы по hFE: L/HМаркировка: HF
C1815T 0,4 60 50 5 0,15 125 70…700 ≥ 80 ≤ 3,5 ≤ 10 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR
CSC1815 0,625 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3 ≤ 10 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
FTC1815 0,4 60 50 5 0,15 125 70…700 ≥ 80 ≤ 3,5 ≤ 10 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
KSC1815 0,4 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3 1 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/L
KTC1815 0,625 60 50 5 0,15 150 25…700 ≥ 80 ≤ 3,5 ≤ 10 ≤ 0,25 TO-92 Группы по hFE: Y/GR
Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: