Транзисторы КТ3102А, КТ3102Б, КТ3102В, КТ3102Г, КТ3102Е, КТ3102Д.
Транзисторы КТ3102 — кремниевые, усилительные маломощные
высокочастотные, структуры n-p-n.
Пониженный коэффициент
шума на частоте 1000 гц позволяет использовать эти транзисторы
в каскадах предварительных усилителей звуковой частоты.
Кроме того, они применяются в усилительных и генераторных схемах высокой частоты.
Корпус металлостеклянный(у более древних экземпляров) или пластиковый — , с гибкими выводами.
Масса — около 0,5 г.
Маркировка буквенно — цифровая, либо цветовая — на боковой и верхней поверхностях корпуса.
При цветовой маркировке, темно-зеленое пятно на боковой поверхности определяет тип(КТ3102).
Цветовое пятно сверху обозначает группу: Бордовое — группа А(КТ3102А). Желтое — группа Б(КТ3102Б).Темно-зеленое — группа В(КТ3102В). Голубое — группа Г(КТ3102Г).Синие — группа Д(КТ3102Д).Цвета «электрик» — группа Е(КТ3102Е).
Цоколевка КТ3102 — на рисунке ниже.
Наиболее важные параметры.
Коэффициент передачи тока у транзисторов КТ3102А — от 100, до 250.
У транзисторов КТ3102Б, КТ3102В, КТ3102Д — от 200, до 500.
У транзисторов КТ3102Г, КТ3102Е — от 400, до
1000.
Коэффициент шума при напряжении коллектор-эмиттер 5в, коллекторном токе 0,2мА,
на частоте 1КГц:
У транзисторов КТ3102Б, КТ3102В, КТ3102А, КТ3102Г — не более 10дБ.
У транзисторов КТ3102Д, КТ3102Е — не более 10дБ.
1000.
Максимальное напряжение коллектор — эмиттер.
У транзисторов КТ3102А, КТ3102Б, КТ3102Е — 50в.
У транзисторов КТ3102В, КТ3102Д — 30в.
У транзистора КТ3102Г — 20в.
Максимальный ток коллектора — 100мА.
Максимальное напряжение эмиттер-база — 5в.
Обратный ток коллектор-эмиттер :
У транзисторов КТ3102А, КТ3102Б при напряжении коллектор-эмиттер 50 в — не более0,1мкА.
У транзисторов КТ3102В, КТ3102Д при напряжении коллектор-эмиттер 30 в и
транзисторов КТ3102Г, КТ3102Е при напряжении коллектор-эмиттер 20 в — не более0,05мкА.
Обратный ток коллектора не более:
У транзисторов КТ3102А, КТ3102Б при напряжении коллектор-эмиттер 50 в — не более 0,05мкА,
при температуре +25 Цельсия.
При температуре +85 — не более 5мкА.
У транзисторов КТ3102В, КТ3102Д при напряжении коллектор-эмиттер 30 в и у КТ3102В, КТ3102Д
при напряжении коллектор-эмиттер 20 в — не более 0,015мкА,
при температуре +25 Цельсия.
При температуре +85, обратный ток может вырасти до 5мкА.
Рассеиваемая мощность коллектора. — 250мВт.
Граничная частота коэффициента передачи
тока — 150 МГц.
Технические характеристики [ править ]
Точные рабочие характеристики зависят от производителя и даты; до перехода на эпитаксиальную базовую версию в середине 1970-х годов f T могла составлять, например, всего 0,8 МГц.
производитель | Дата | V генеральный директор | V CBO | V CER (100 Ом) | I C | I B | P D @ T C = 25 град. | h fe (импульсный тест) | f T |
---|---|---|---|---|---|---|---|---|---|
RCA | 1967 | 60 В генеральный директор (вус) | 100 В CBO | 70 В CER (Sus) | 15А | 7А | 115 Вт | 20-70 (при I C = 4А в импульсном режиме ) | не дано |
ON-Semiconductor | 2005 | 60 В генеральный директор | 100 В CBO | 70 В CER | 15А (непрерывный) | 7А | 115 Вт | 20-70 (при I C = 4A) | 2,5 МГц |
Упакованный в корпус типа TO-3 , это силовой транзистор на 15 А , 60 В (или более, см. Ниже), 115 Вт с (усиление прямого тока) от 20 до 70 при токе коллектора 4 А (это может быть от 100 до 200 при тестировании с помощью мультиметра ). часто составляет около 3,0 МГц, а для 2N3055A типично 6 МГц; на этой частоте расчетное усиление по току (бета) падает до 1, указывая на то, что транзистор больше не может обеспечивать полезное усиление в конфигурации с обычным эмиттером . Частота, при которой усиление начинает падать, может быть намного ниже, см. Ниже.
Транзистор 2Н3055 внутреннее устройство.
Максимальные оценки
Максимальное напряжение между коллектором и эмиттером для 2N3055, как и для других транзисторов, зависит от пути сопротивления, который внешняя цепь обеспечивает между базой и эмиттером транзистора; при 100 Ом номинальное напряжение пробоя 70 В, V CER , и поддерживающее напряжение коллектор-эмиттер, V CEO (sus) , предоставлено ON Semiconductor. Иногда напряжение пробоя CBO 100 В (максимальное напряжение между коллектором и базой при открытом эмиттере, нереалистичное расположение в практических схемах) указывается как единственное номинальное напряжение, которое может вызвать путаницу. Производители редко указывают номинальное напряжение V CES для 2N3055.
Общая потребляемая мощность (P написана D в большинстве американских справочных данных, P карапуз в европейских) зависит от радиатора , к которому подключен 2N3055. С «бесконечным» радиатором, то есть: когда температура корпуса определенно составляет 25 градусов, номинальная мощность составляет около 115 Вт (некоторые производители указывают 117 Вт), но для большинства приложений (и, конечно, при высокой температуре окружающей среды) ожидается значительно более низкая номинальная мощность согласно графику снижения мощности производителя
Устройство разработано для работы с эффективным радиатором, но необходимо соблюдать осторожность, чтобы правильно установить устройство иначе это может привести к физическому повреждению или ухудшению энергопотребления, особенно с корпусами или радиаторами, которые не идеально плоский
Частота перехода, f T
Руководство по RCA-транзисторам 1967 года, SC-13, не упоминает никаких измерений высокочастотных характеристик 2N3055; в руководстве SC-15 1971 года была указана частота перехода f T не менее 800 кГц (при I C = 1 A) и f hfe (частота, при которой усиление тока слабого сигнала падает на 3 дБ). указано при 1А как минимум 10 кГц. Другие производители примерно в это время также указали бы аналогичные значения (например, в 1973 году Philips дал f T > 0,8 МГц и f hfe > 15 кГц для своего устройства 2N3055).
К 1977 году RCA изменили свою спецификацию, чтобы дать 2,5 для минимальной величины усиления слабого сигнала при f = 1 МГц, по существу давая минимальное значение f T 2,5 МГц (и 4 МГц для их MJ2955). Современные таблицы данных 2N3055 часто, но не всегда, указывают f T равным 2,5 МГц (минимум), потому что со временем были внесены некоторые улучшения (особенно переход на эпитаксиальный производственный процесс). Тем не менее, нельзя предполагать, что 2N3055 (и многие другие силовые транзисторы того времени) обладают хорошими высокочастотными характеристиками, и даже в пределах диапазона звуковых частот может наблюдаться ухудшение фазового сдвига и усиления без обратной связи. Современные преемники 2N3055 могут быть гораздо более подходящими в схемах с быстрым переключением или высококачественных усилителях мощности звука.
Ссылки [ править ]
- ^ a b c d e Эллис, Дж. Осадчий ВС; Zarlink Semiconductor (ноябрь 2001 г.). «2N3055: история болезни». Транзакции IEEE на электронных устройствах . 48 (11): 2477–2484. DOI : 10.1109 / 16.960371 .
- ^ Дир, SM (2000) . «Глава 2.2: Спецификации и тестирование BJT» . Электронные компоненты и материалы: принципы, производство и обслуживание (пятое переиздание, 2007 г.). Индия: Tata McGraw-Hill Publishing Company Limited . п. 145. ISBN 0-07-463082-2. ISBN 978-0-07-463082-2 .
-
^ П. Горовиц; У. Хилл (2001). Искусство электроники (2-е изд.). Издательство Кембриджского университета. п. 321. ISBN. 978-0-521-37095-0.
неизменно популярный 2N3055
-
^ Гордон МакКомб (2001). Золотое дно роботов-строителей (2-е изд.). McGraw-Hill Professional. п. 261. ISBN. 978-0-07-136296-2.
Для высокопроизводительных работ почти повсеместно используется NPN-транзистор 2N3055.
-
^ Рудольф Ф. Граф; Уильям Шитс (2001). Создавайте собственные маломощные передатчики: проекты для экспериментатора электроники . Newnes. п. 14. ISBN 978-0-7506-7244-3.
Например, устройства 2N2222, 2N2905 и 2N3055, которые относятся к 1960-м годам, но были усовершенствованы, по-прежнему используются в новых конструкциях и по-прежнему популярны среди экспериментаторов.
- ^ a b c «2N3055 (NPN), MJ2955 (PNP): дополнительные кремниевые силовые транзисторы (6-я редакция)» . О полупроводнике . Полупроводниковые компоненты. Декабрь 2005 . Проверено 25 марта 2011 .
- ^ Рор, Билл. «Рекомендации по монтажу силовых полупроводников» . ON Semiconductor . Проверено 31 октября 2016 года .
- ^ Эллиотт, Род. «Конструкция радиатора и установка транзистора» .
- ^ Бьяджи, Юбер. «МОНТАЖ ПАКЕТОВ ТО-3» . Берр-Браун . Проверено 31 октября 2016 года .
- ^ Уорд, Джек (2001). «Устная история — Херб Майзель» . п. 3 . Проверено 7 ноября +2016 .
- ^ Книга данных Power Semiconductor для инженеров-проектировщиков Первое издание , Texas Instruments Incorporated, публикация No. CC-404 70977-22-IS, без даты, стр. 5-75
- ^ Группа IOSS (2008). Справочник по электронным аудиосхемам приложений IOSS . 1 . п. 52–53. ISBN 1-4404-7195-9. Проверено 25 марта 2011 .
- ^ http://www.st.com/web/en/resource/technical/document/datasheet/CD00000895.pdf
- ^ Устройства питания RCA . RCA Corporation. 1977 г.
- ^ «Транзисторы Тесла: таблица транзисторов Тесла» . Транзисторы Тесла . Тесла. 1980 . Проверено 15 декабря 2015 .
Предельно допустимые значения
В случае превышения приведенного в таблице 1 значения любого из параметров, производитель не гарантирует как соблюдения заявленных остальных значений (таблица 2) и типовых характеристик (приведены далее), так исправности самой детали.
Таблица 1. Предельные значения параметров на транзистор S9014
Обозначение | Параметр | Значение | |
---|---|---|---|
VCBO (UCB max) | Напряжение коллектор-база, В | 50 | |
VCEO (UCE max) | Напряжение коллектор-эмиттер, В | 45 | |
VEBO (UEB max) | Напряжение эмиттер-база (обратное), В | 5 | |
IC (ICmax) | Ток коллектора, мА | 100 | |
PC (PC max) | Рассеиваемая мощность, Вт | SOT-23 | 0,2 |
TO-92 | 0,45 | ||
Tj (tjmax) | Температура кристалла, °С | 150 | |
Tstg | Температура хранения, °С | -55…+150 |
Electronic Installation
The query regarding how to install 2N3005 would include either mechanical or electronic installations procedures, we’ll discuss both of them here.
Installing or fitting 2N3055 over a heatsink: As we all know a heatsink which is meant for absorbing heat from the device, so it needs to be a very good conductor of heat and yet cheap. Aluminum is the best material used for the purpose and a conventionally accepted material as heatsinks for electronic devices. The installation of the 2N3055 would involve the following steps:
Procure from the market or fabricate the heatsink plate as per the specifications.
Drill holes as per the dimensions of the transistor leads and fixing holes, as shown in the diagram.
Apply and spread some heatsink paste over the lead side flat surface of 2N3055.
Place the component over the drilled surface so that the leads pass through the drillings appropriately, the fitting holes coincide with the drilled holes and the surfaces “stick” snugly with the heatsink paste getting tightly sandwiched between the device and the metal.
Now it’s just a matter of securing the device by nuts and screws across the concurrent holes and tightening them as firmly as possible.
Make sure the protruding leads clear pass through the center of the drillings, and is kept well aloof from the heatsink metal.
If two devices need to be fixed over a common heatsink, then make sure the heatsink mica kit is used while doing the above operations. However if their collectors (body) are in parallel then they can be directly fixed over a common heatsink metal without using mica protective insulations.
2n3055 transistor Description
- The 2n3055 transistor is a medium power transistor device and due to this reason, they had wide applications in power electronics.
- The peak current gain on the 2n3055 transistor is 20 to 70hFE, and this is an important value at amplifier circuits.
- The maximum collector current at 2n3055 transistor is 15A, which means the maximum load current allowed on this transistor, the current indicate it is a power transistor.
- The peak base current of this transistor is 7A, the maximum allowable bias voltage on the trigger terminal.
- The power dissipation on the transistor is 115W, this particular value indicates the power dissipation at this transistor device.
- The transition frequency on this transistor is 2.5MHZ, it is an important factor in transistor switching applications.
- The maximum junction temperature on the 2n3055 transistor is 200°C.
Историческая справка
История этого популярного полупроводникового прибора хорошо известна. Первоначально он был разработан в 60-хх компанией RCA (инженерами из группы Херба Мейзеля) и производился по меза-планарному техпроцессу. Предназначался для работы в усилителях мощности. В последующем стал применяться в стабилизаторах и регуляторах напряжения в блоках питания. С середины 70-xx, вместе с поиском более экономичного способа производства, его начали изготавливать по эпитаксиальной технологии. Неплохие усиливающие свойства, их линейность при этом, cделали устройство незаменимым спутником многих УНЧ того времени.
К сожалению RCA в 1988 г. прекратило существование. Её полупроводниковый бизнес приобрела американская Harris Corporation. Сейчас транзисторы с маркировкой 2N 3055 выпускают многие зарубежные компании, в том числе с применением экологичных без свинцовых (Pb-Free) стандартов. Считается, что более новые экземпляры (выпущенные по эпитаксиальной технологии) лучше работают в схемах усиления, но хуже защищены от высоких напряжений.
Вместе тем, в последнее время качество изготовления таких транзисторов сильно упало, особенно с появлением китайских конкурентов. Кроме того, появились случаи их подделки. Маловероятно купить оригинальный экземпляр на интернет-площадках вроде Aliexpress, Amazon, eBay, и др. Поэтому многие радиолюбители предпочитают его старые версии, выпущенные преимущественно до 2000 г.
↑ Техническое задание
Как всегда, считаю, что любительская конструкция, как правило, должна быть простой, дешевой, технологичной, состоять из недефицитных деталей. Кроме того, я давно пришел к выводу, что для подобных целей лучше делать небольшие простые платы без блока питания, без цифрового индикатора, без сложного корпуса. Достаточно предусмотреть зажимы для подключения внешнего лабораторного регулируемого блока питания, индикатора в виде простого цифрового тестера или стрелочного прибора, при необходимости — осциллографа и т. п. Такие приборы быстро делаются и переделываются, а главное — они работают и приносят пользу. Если же задумать многофункциональный самодостаточный прибор в отдельном красивом корпусе, он обычно так и останется в прожектах. Кроме того, если прибор сделан, вдруг оказывается, что надо добавить еще одну функцию, например, капацитовизор, а места на передней панели уже нет и дизигн надо портить… Поэтому я считаю, что неказистые любительские узкофункциональные изделия имеют право на жизнь.
Итак, задумана проверка кремниевых транзисторов в режиме — ток 200 мА, напряжение К-Э = 2 В. Оперативно можно изменять ток в диапазоне примерно 150…300 мА, напряжение К-Э до 5…7 В. Можно проверять (чуть изменив настройки) составные транзисторы с двумя последовательными P-N переходами.
Тумблером можно изменить ток, например, в 10 раз. Это позволит проверять и маломощные транзисторы при токе 15…30 мА (заменой одного резистора можно установить любой разумный ток). Важным считаю удобство подключения любых транзисторов. Для транзисторов КТ814-819 на плате стоят панельки, для мощных транзисторов в корпусах типа ТО-247, ТО-3Р, есть зажимы. В них устанавливают провода с «крокодилами», которые позволяют подключать транзисторы в корпусе ТО-3, любые транзисторы с гнутыми паяными выводами и т. д.
Изменение напряжения К-Э осуществляется внешним источником питания, цель – проверка идентичности режимов при большем напряжении и значительном нагреве транзисторов. При 5 В и 200 мА получаем предельную мощность для КТ814 без теплоотвода — 1 Вт. Для бОльших корпусов без теплоотводов тепловая мощность обычно = 2 Вт.
Легко заметить, что усиление транзистора зависит в некоторых пределах как от напряжения, так и от температуры, поэтому определение абсолютного значения усиления транзистора с помощью микропроцессора с точностью до седьмого знака, не имеет смысла. По этой причине выбрано простейшее схемное решение, которое дает достаточную для практики точность и позволяет обойтись без ОУ, МК и нескольких источников питания. Для измерения тока базы годится любой цифровой тестер, например, М-832.
2n3055 vs 2n3773 vs tip3055 vs 2n3771
This below compares each of the identical transistors, such as 2n3055 vs 2n3773, 2n3055 vs 2n3773, 2n3055 vs tip3055 and 2n3055 vs 2n3771. The electrical aspects of each transistors are been compare for better understanding.
2n3055 | 2n3773 | Tip3055 | 2n3771 | |
---|---|---|---|---|
Collector to base voltage (VCB) | 2n3055100V | 2n3773100V | Tip3055100V | 2n377150V |
Collector to emitter voltage (VCE)(RBE= 100Ω) | 2n305570V | 2n3773160V | Tip305570V | 2n377150V |
Collector to emitter voltage (VCE) (IB = 0) | 2n305560V | 2n3773140V | Tip305560V | 2n377140V |
Emitter to base voltage (VEB) | 2n30557V | 2n37737V | Tip30557V | 2n37715V |
Collector current (IC) | 2n305515A | 2n377330A | Tip305515A | 2n377130A |
Power dissipation | 2n3055115W | 2n3773150W | Tip305590W | 2n3771150W |
Junction temperature (TJ) | 2n3055200°C | 2n3773200°C | Tip3055150°C | 2n3771200°C |
Transition frequency (FT) | 2n30552.5MHZ | 2n37734MHZ | Tip30552.5MHZ | 2n37710.2MHz |
Noise (N) | 2n3055– | 2n3773– | Tip3055– | 2n3771– |
Gain (hFE) | 2n305520 to 70hFE | 2n37735 to 60hFE | Tip30555 to 70hFE | 2n377115 to 60hFE |
Package | 2n3055TO-3 | 2n3773TO-3 | Tip3055TO-247 | 2n3771TO-3 |
2n3055 transistor uses
- Power switching applications
- Amplifier circuits
- Regulator circuits
- Inverter and ups circuits
- SMPS
- PWM circuits
- Signal amplifier circuits