Техническая документация к электронным компонентам на русском языке.
Описание
Кремниевый NPN диффузионный транзистор для импульсных источников питания и преобразователей.
Особенности:
- Мощный высоковольтный транзистор с высокой скоростью переключения.
- Высокое напряжение пробоя: Vceo = 800 В.
- Изолированный корпус.
Символы | Параметр | Условия | Мин. значение | Тип. значение | Макс. значение | Единицы |
Vcbo | Напряжение коллектор-база | — | — | — | 900 | В |
Vceo | Напряжение коллектор-эмиттер | — | — | — | 800 | В |
Vebo | Напряжение эмиттер-база | — | — | — | 7 | В |
Ic | Ток коллектора постоянный/импульсный | — | — | — | 3,0/5,0 | А |
Pc | Мощность, рассеиваемая на коллекторе | T = 25 °C | — | — | 25 | Вт |
hFE | Коэффициент передачи тока в схеме ОЭ | Vce = 5 В, Ic = 0,15 А | 15 | — | — | — |
Vce_sat | Напряжение насыщения К-Э | Ic = 1,2 A, Ib = 0,24 А | — | — | 1,0 | В |
Ib | Ток базы | — | — | — | 1,0 | А |
Tr/Tf | Время нарастания/спада | — | — | 0,5 | 0,7/0,5 | мкс |
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Главная | О сайте | Теория | Практика | Контакты |
Высказывания: Если что-либо не работает, стукните это хорошенько, если оно сломалось — ничего, все равно нужно было выбрасывать. Основные параметры биполярного низкочастотного npn транзистора 2SC5353Эта страница создана пользователем сайта через систему Коллективного разума и показывает существующую справочную информацию о параметрах биполярного низкочастотного npn транзистора 2SC5353 . Информация о параметрах, цоколевке, характеристиках, местах продажи и производителях. Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремнийСтруктура полупроводникового перехода: npn |
Pc max, мВт | Ucb max, В | Uce max, В | Ueb max, В | Ic max, мА | Tj max, °C | Ft max, Гц | Cc tip, пФ | Hfe |
25000 | 900 | 800 | 7 | 3000 | +150 | 200000 | 15 |
Bosch pke611d17e варочная панель как подключить провода
Производитель: UTCСфера применения: Популярность: 3246Условные обозначения описаны на странице «Теория».
Схемы транзистора 2SC5353
Общий вид транзистора 2SC5353. | Цоколевка транзистора 2SC5353. |
Обозначение контактов: Международное: C — коллектор, B — база, E — эмиттер. Российское: К — коллектор, Б — база, Э — эмиттер.
Дата создания страницы: 2016-02-03 08:45:50.
Другие разделы справочника:
Есть надежда, что справочник транзисторов окажется полезен опытным и начинающим радиолюбителям, конструкторам и учащимся. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте». Если Вы заметили ошибку, огромная просьба написать письмо. Спасибо за терпение и сотрудничество.
Биполярный транзистор 2SC5353 — описание производителя. Основные параметры. Даташиты.
Наименование производителя: 2SC5353
Тип материала: Si
Максимальная рассеиваемая мощность (Pc): 25 W
Макcимально допустимое напряжение коллектор-база (Ucb): 900 V
Макcимально допустимое напряжение коллектор-эмиттер (Uce): 800 V
Макcимально допустимое напряжение эмиттер-база (Ueb): 7 V
Макcимальный постоянный ток коллектора (Ic): 3 A
Предельная температура PN-перехода (Tj): 150 °C
Статический коэффициент передачи тока (hfe): 15
Корпус транзистора: TO220NIS
2SC5353 Datasheet (PDF)
1.1. 2sc5353.pdf Size:207K _toshiba
UNISONIC TECHNOLOGIES CO., LTD 2SC5353 NPN SILICON TRANSISTOR HIGH VOLTAGE NPN TRANSISTOR 1 1 TO-126 TO-126C DESCRIPTION Switching Regulator and High Voltage Switching Applications High-Speed DC-DC Converter Applications 1 1 TO-220 TO-220F FEATURES * Excellent switching times: tR = 0.7?s(MAX), tF = 0.5?s (MAX) * High collectors breakdown voltage: VCEO = 700V 1 TO-220F1
UNISONIC TECHNOLOGIES CO., LTD 2SC5353B NPN SILICON TRANSISTOR HIGH VOLTAGE NPN 1 1 TRANSISTOR TO-126 TO-126C DESCRIPTION 1 1 TO-220 TO-220F Switching Regulator and High Voltage Switching Applications High-Speed DC-DC Converter Applications. 1 1 FEATURES TO-220F1 TO-251 * Excellent switching times: tR = 0.7?s(MAX), tF = 0.5?s (MAX) * High collectors breakdown voltage:
«>
BC212 Datasheet (PDF)
..1. bc212 bc213 bc214.pdf Size:107K _motorola
MOTOROLAOrder this documentSEMICONDUCTOR TECHNICAL DATAby BC212/DAmplifier TransistorsBC212,BPNP SiliconBC213COLLECTORBC21432BASE1EMITTER1MAXIMUM RATINGS23BC BC
0.1. bc212lb.pdf Size:27K _fairchild_semi
BC212LBPNP General Purpose Amplifier This device is designed for general purpose amplifier application at collector currents to 100mA. Sourced from process 68.TO-9211. Emitter 2. Collector 3. BaseAbsolute Maximum Ratings* TC=25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collector-Emitter Voltage 50 VVCBO Collector-Base Voltage 60 VVEBO Emitter-Base V
0.2. bc212l.pdf Size:29K _fairchild_semi
BC212LB CETO-92 PNP General Purpose Amplifier This device is designed for general purpose amplifier applications at collector currents to 300mA.Sourced from Process 68. Absolute Maximum Ratings* TA = 25C unless otherwise notedSymbol Parameter Value Units50 VVCEO Collector-Emitter Voltage60 VVCBO Collector-Base Voltage5 VVEBO Emitter-Base VoltageCollector Curr
0.3. bc212b.pdf Size:27K _fairchild_semi
BC212BPNP General Purpose Amplifier This device is designed for general purpose amplifier application at collector currents to 100mA. Sourced from process 68.TO-9211. Collector 2. Base 3. EmitterAbsolute Maximum Ratings* TC=25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collector-Emitter Voltage 50 VVCBO Collector-Base Voltage 60 VVEBO Emitter-Base Vo
0.4. bc212b-d.pdf Size:59K _onsemi
BC212BAmplifier TransistorsPNP SiliconFeatures These are Pb-Free Devices* http://onsemi.comCOLLECTOR1MAXIMUM RATINGSRating Symbol Value Unit2BASECollector-Emitter Voltage VCEO -50 VdcCollector-Base Voltage VCBO -60 Vdc3EMITTEREmitter-Base Voltage VEBO -5.0 VdcCollector Current — Continuous IC -100 mAdcTotal Device Dissipation @ TA = 25C PD 350 mWDerate a
0.5. bc212csm.pdf Size:11K _semelab
BC212CSMDimensions in mm (inches). Bipolar PNP Device in a 0.51 0.10 Hermetically sealed LCC1 (0.02 0.004) 0.31rad.(0.012) Ceramic Surface Mount 3Package for High Reliability Applications 211.91 0.10(0.075 0.004)A0.31rad.Bipolar PNP Device. (0.012)3.05 0.13(0.12 0.005)1.40(0.055)1.02 0.10max.VCEO = 50V A =(0.04 0.004)
0.6. bc212dcsm.pdf Size:10K _semelab
BC212DCSMDimensions in mm (inches). Dual Bipolar PNP Devices in a hermetically sealed LCC2 Ceramic Surface Mount Package for High Reliability 1.40 0.152.29 0.20 1.65 0.13(0.055 0.006)(0.09 0.008) (0.065 0.005)Applications 2 314Dual Bipolar PNP Devices. A0.236 5rad. (0.009) V = 50V CEO6.22 0.13 A = 1.27 0.13I = 0.2A C(0.05
0.7. bc212l la lb bc214l.pdf Size:76K _cdil
Continental Device India LimitedAn ISO/TS 16949, ISO 9001 and ISO 14001 Certified CompanyTO-92 Plastic PackageBC212L, BC212LA, BC212LBBC214L, BC214LB, BC214LCPNP SILICON PLANAR EPITAXIAL TRANSISTORSAmplifier TransistorsDIM MIN MAXA 4,32 5,33B 4,45 5,20C 3,18 4,19D 0,41 0,55E 0,35 0,50F 5 DEGG 1,14 1,40H 1,14 1,53K 12,70 L 1.982 2.082ALL DIMENSIONS IN M.M.
Другие транзисторы… BC211A
, BC211A-10
, BC211A-16
, BC211A-6
, BC211B
, BC211C
, BC211D
, BC211E
, , BC212A
, BC212AP
, BC212B
, BC212BP
, BC212K
, BC212KA
, BC212KB
, BC212L
.
Маркировка
Цифры “13001” на корпусе дают общее представление об этом полупроводниковом устройстве. Многие производители маркируют так свои изделия из-за отсутствия места на корпусе ТО-92, не указывая при этом префикс в начале. В статье приведены технические характеристики устройств малоизвестных в России производителей DGNJDZ, Semtech Electronics, YFWDIODE. Указанные производители в своих даташитах не указывают дополнительных символов маркировки. Без дополнительных обозначений маркирует свой транзистор TS13001 тайваньская компания TSMC. Первые две литеры “TS” являются аббревиатурой первых двух слов в полном названии компании Taiwan Semiconductor Manufacturing Company. В тоже время, на рыке достаточно широко представлены транзисторы mje13001, которые тоже промаркированы цифрами 13001. SHENZHEN JTD ELECTRONICS и многие другие производители применяют s13001 s8d при маркировке своих девайсов. Встречаются и другие префиксы, не рассмотренные в статье. Многие продавцы не заморачиваясь с маркировкой в наименовании товара, указывают все возможные его типы вместе с датой производства.
Практика работы составного транзистора
На рис. 3 показаны три варианта построения выходного каскада (эмиттерный повторитель). При подборе транзисторов надо стремится к b1~b2 и b3~b4 . Различие можно компенсировать за счёт подбора пар по равенству коэффициентов усиления СТ b13~b24 (см. табл. 1).
- Схема на рис. 3а имеет наибольшее входное сопротивление, но это худшая из приведённых схем: требует изоляцию фланцев мощных транзисторов (или раздельные радиаторы) и обеспечивает наименьший размах напряжения, поскольку между базами СТ должно падать ~2 В, в противном случае сильно проявятся искажения типа «ступенька».
- Схема на рис. 3б досталась в наследство с тех времён, когда ещё не выпускались комплементарные пары мощных транзисторов. Единственный плюс по сравнению с предыдущим вариантом – меньшее падение напряжения ~1,8 В и больше размах без искажений.
- Схема на рис. 3в наглядно демонстрирует преимущества СТШ: между базами СТ падает минимум напряжения, а мощные транзисторы можно посадить на общий радиатор без изоляционных прокладок.
На рис. 4 показаны два параметрических стабилизатора. Выходное напряжение для варианта с СТД равно:
Поскольку Uбэ гуляет в зависимости от температуры и коллекторного тока, то у схемы с СТД разброс выходного напряжения будет больше, а потому вариант с СТШ предпочтительней.
Рис. 3. Варианты выходных эмиттерных повторителей на СТ
Рис. 4. Применение СТ в качестве регулятора в линейном стабилизаторе
Для коммутации электромеханических приводов и, тем более, в импульсных схемах следует использовать готовые СТ с нормированными параметрами включения и выключения, паразитными ёмкостями. Типичный пример – широко распространённые импортные комплементарные СТД серии TIP12х.
Биполярный транзистор BDP951 — описание производителя. Основные параметры. Даташиты.
Наименование производителя: BDP951
Тип материала: Si
Полярность: NPN
Максимальная рассеиваемая мощность (Pc): 3
W
Макcимально допустимое напряжение коллектор-база (Ucb): 100
V
Макcимально допустимое напряжение коллектор-эмиттер (Uce): 80
V
Макcимально допустимое напряжение эмиттер-база (Ueb): 5
V
Макcимальный постоянный ток коллектора (Ic): 3
A
Предельная температура PN-перехода (Tj): 150
°C
Граничная частота коэффициента передачи тока (ft): 100
MHz
Ёмкость коллекторного перехода (Cc): 40
pf
Статический коэффициент передачи тока (hfe): 25
Корпус транзистора:
BDP951
Datasheet (PDF)
..1. Size:41K siemens bdp951.pdf
BDP 951NPN Silicon AF Power Transistors For AF drivers and output stages High collector current High current gain Low collector-emitter saturation voltage Complementary type: BDP952…BDP956 (PNP)Type Marking Ordering Code Pin Configuration PackageBDP 951 BDP 951 Q62702-D1339 1 = B 2 = C 3 = E 4 = C SOT-223BDP 953 BDP 953 Q62702-D1341 1 = B 2 = C 3 = E 4 = C SOT
9.1. Size:40K siemens bdp952.pdf
BDP 952PNP Silicon AF Power Transistor For AF drivers and output stages High collector current High current gain Low collector-emitter saturation voltage Complementary type: BDP951…BDP955 (NPN)Type Marking Ordering Code Pin Configuration PackageBDP 952 BDP 952 Q62702-D1340 1 = B 2 = C 3 = E 4 = C SOT-223BDP 954 BDP 954 Q62702-D1342 1 = B 2 = C 3 = E 4 = C SOT-
9.2. Size:523K infineon bdp947 bdp949 bdp953.pdf
BDP947_BDP949_BDP953Silicon NPN Transistors For AF driver and output stages43 High collector current21 High current gain Low collector-emitter saturation voltage Complementary types: BDP948, BDP950, BDP954 (PNP) Pb-free (RoHS compliant) package Qualified according AEC Q101Type Marking Pin Configuration PackageBDP947 BDP947 1=B 2=C 3=E 4=C — — S
9.3. Size:532K infineon bdp948 bdp950 bdp954.pdf
BDP948_BDP950_BDP954PNP Silicon AF Power Transistors For AF driver and output stages43 High collector current21 High current gain Low collector-emitter saturation voltage Complementary types: BDP947, BDP949 BDP953 (NPN) Pb-free (RoHS compliant) package Qualified according AEC Q101Type Marking Pin Configuration PackageBDP948 BDP948 1=B 2=C 3=E 4
Другие транзисторы… BDCP25
, BDP281
, BDP283
, BDP285
, BDP947
, BDP948
, BDP949
, BDP950
, TIP31
, BDP952
, BDP953
, BDP954
, BDP955
, BDP956
, BDS10
, BDS10SM
, BDS11
.
Устройство и принцип работы MOSFET транзистора с встроенным каналом.
Устройство, в целом, схоже с JFET-транзисторами, вспомним основных действующих лиц:
- Область P-типа, в которой основными носителями заряда являются дырки.
- Область N+, в которой, напротив, основные носители – электроны. Пометка «+» символизирует повышенное легирование области, что означает повышенную же концентрацию электронов в ней.
- Электроды полевого транзистора – сток, исток и затвор. Вывод подложки может как присутствовать, так и отсутствовать (в таком случае он соединен с истоком внутри транзистора).
- И ко всему прочему, зоны типа N+ соединены между собой – эта область и образует встроенный канал, присутствующий в названии компонента.
Как адепт максимально четкой структуры, я пойду по такому же плану, как в статье про JFET. Стартовая точка такова:
Начнем с подключения следующим образом:
Канал (то есть область N-типа, соединяющая сток и исток) у нас присутствует конструктивно изначально, поэтому ничто и никто не препятствует движению электронов по этому самому каналу.
Движение электронов – это, в свою очередь, есть протекание тока. То есть при U_{ЗИ} = 0 в наличии имеется протекающий от стока к истоку ток. Фиксируем данный факт, и подаем положительное напряжение между затвором и истоком:
Возникающее электрическое поле будет притягивать дополнительные электроны как из областей стока и истока, так и из подложки, где концентрация электронов пусть и невелика, но они там есть.
И что получаем в итоге? Фактически увеличение, оно же расширение, канала, из которого логичным образом вытекает и увеличение тока, поскольку физически по нему сможет перемещаться большее количество электронов. Расширение канала ⇒ уменьшение его сопротивления ⇒ увеличение его проводимости ⇒ увеличение потока электронов ⇒ увеличение тока
При таком включении MOSFET транзистор работает в режиме обогащения. Проведем сравнительный анализ со случаем, когда U_{ЗИ} = 0:
Все соответствует произведенным нами выводам. Но на этом не завершаем, второй случай: U_{ЗИ} < 0. Механизм тот же, эффект противоположный:
Теперь возникающее поперечное электрическое поле приводит, наоборот, к выталкиванию электронов из области канала, что ведет к диаметрально отличающимся последствиям. Сужение канала ⇒ увеличение его сопротивления ⇒ уменьшение его проводимости ⇒ уменьшение потока электронов ⇒ уменьшение тока. И по итогу имеем:
В данном случае транзистор с встроенным каналом пребывает в режиме обеднения. И для всех трех рассмотренных случаев:
Также рассмотрим зависимость тока сток-исток от напряжения между затвором и истоком. Очевидно, что увидим тут полное соответствие тому, что разобрали:
При U_{ЗИ} = 0 через транзистор (по пути сток-исток) течет некий ток. Увеличение U_{ЗИ} – увеличение тока, то же самое и при уменьшении, то есть отрицательном смещении затвора относительно истока. При определенном пороговом значении канал сужается настолько, что протекание тока прекращается полностью.
Разобрали суть протекающих процессов и явлений, переходим ко второму типу – MOSFET с индуцированным каналом.
Технические характеристики
Наиболее полная и подробная информация о 2N7002, с характеристиками и графиками зависимостей, представлена в технической документации (datasheet). Согласно справочных данных, основные параметры таких устройств у всех производителей практически одинаковые. Но прогресс не стоит на месте. Вместе с новыми требованиями предъявляемыми заказчиками, ужесточением экологических стандартов, многие компании совершенствуют процессы производства с одновременным улучшением свойств своих электронных продуктов.
Например, обновлённые 2N7002 от Infineon, производят с учётом требований европейских экономических норм (RoHS), с использованием безсвинцовых (Pb-Free) и безгалогеновым (Halogen-free) технологий. Последние имеют более прочные огнеупорные пластиковые корпуса PG-SOT-23 по классификации 94V-0, внешние выводы под пайку по стандарту MIL-STD-202. Последние обладают усиленной влагозащитой согласно J-STD-020, сертификатами соответствия методике испытаний JESD22, оценены по чувствительности к электрическим разрядам (ESS class) и др.
В datasheet некоторых компаний напрямую указывается о соблюдении при производстве требований JEDEC (США). Таким образом они подчёркивают качество свой продукции и её соответствие заявленным параметрам. Почти все известные брэнды являются членами указанной ассоциации полупроводниковых технологий. Очевидно, что основные максимальные и электрические параметры у новых устройств значительно лучше, чем у первых версий 90-х годов. Именно они будут рассмотрены далее.
Максимальные значения
Максимальные характеристики 2N7002 (при ТА=25oC):
- напряжение: сток-исток (V DS) до 60 В; затвор-исток (V GS) до 40 В;
- предельный ток стока (I D) до 0.3 A; импульсный (I D pulse) до 1.2 A;
- сопротивление проводящего канала сток-исток (R DS(on)): до 3 Ом (при VGS=10 В); до 4 Ом (при VGS=4.5 В);
- рассеиваемая мощность (P tot) — 0.5 Вт;
- рабочая температура (Tj) -55…150 oC.
Электрические значения
Следует отметить, что представленные выше значения справедливы только для идеальных условий эксплуатации. Их превышение зачастую приводит к разрушению структуры транзистора, его нестабильной работе с последующим выходом из строя. С ростом температуры окружающей среды (свыше +25oC) свойства изделия ухудшаются. Поэтому при планировании использования 2N7002 необходимо предусматривать 30% запас по всем параметрам. В datasheet вместе с максимальными (абсолютными) характеристиками приводятся электрические, при которых устройство работает стабильно и долго.
Маркировка
У smd-транзистора 2N7002 буквенно-цифровая маркировка. Чаще всего на его корпусе присутствуют следующие обозначения: 7002, 12W, 7200, 702. Очень редко, особенно на старых материнских платах, такие устройства встречается с символами: K7K, 72K, 7S2.
Биполярный транзистор
Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.
Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.
В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.
Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.
Основные особенности транзистора Дарлингтона
Основное достоинство составного транзистора это большой коэффициент усиления по току.
Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h21). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.
Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости. Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости: p-n-p и n-p-n. Вот пример составного транзистора по схеме Шиклаи, который работает как транзистор с n-p-n проводимостью, хотя и состоит из двух различной структуры.
схема Шиклаи
К недостаткам составных транзисторов следует отнести невысокое быстродействие, поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.
Хорошо зарекомендовал себя для работы в электронных схемах зажигания мощный n-p-n транзистор Дарлингтона BU931.
Основные электрические параметры:
-
Напряжение коллектор – эмиттер 500 V;
-
Напряжение эмиттер – база 5 V;
-
Ток коллектора – 15 А;
-
Ток коллектора максимальный – 30 А;
-
Мощность рассеивания при 250С – 135 W;
-
Температура кристалла (перехода) – 1750С.
На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.
Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру n-p-n, а TIP125, TIP126, TIP127 — p-n-p.
Также на принципиальных схемах можно встретить и вот такое обозначение.
Транзисторы BC556, BC557, BC558, BC559, BC560 с буквами A, B, C.
Т ранзисторы BC556 – BC560 – кремниевые, высокочастотные усилительные общего назначения, структуры – p-n-p. Корпус пластиковый TO-92B. Маркировка буквенно – цифровая.
Наиболее важные параметры.
Постоянная рассеиваемая мощность(Рк т max ) – 500 мВт.
Предельная частота коэффициента передачи тока ( fh21э )транзистора для схем с общим эмиттером – 300 МГц;
Максимальное напряжение коллектор – эмиттер – У транзисторов BC556 65в. У транзисторов BC557, BC560 45в. У транзисторов BC558, BC549 30в.
Максимальное напряжение коллектор – база – У транзисторов BC556 80в. У транзисторов BC557, BC560 50в. У транзисторов BC558, BC559 30в.
Максимальное напряжение эмиттер – база – 5в.
Коэффициент передачи тока: У транзисторов BC556A, BC557A, BC558A, BC559A, BC560A – от 110 до 220. У транзисторов BC556B, BC557B, BC558B, BC559B, BC560B – от 200 до 450. У транзисторов BC556C, BC557C, BC558C, BC559C, BC560C – от 420 до 800.
Максимальный постоянный ток коллектора – 100 мА.
Напряжение насыщения коллектор-эмиттер при токе коллектора100мА, базы 5мА – не выше 0,6в.
Напряжение насыщения база-эмиттер при токе коллектора 100мА, базы 5мА – 0,9в.
Транзисторы комплиментарные BC556, BC557, BC558, BC559, BC560 – BC546, BC547, BC548, BC549, BC550.
BC556, BC557, BC558, BC559, BC560 встречаются в самых различных схемах. Эти транзисторы успешно используют, как для усиления сигналов звуковой частоты, так и в радиочастотных каскадах. Пример – популярная схема переговорного устройства(уоки – токи) на 27мГц.
Схема состоит из двух компонентов – LC генератора(емкостная трехточка) на частоту 27мГц и усилителя звуковой частоты с двухтактным выходным каскадом. Режимы прием – передача переключаются с помощью переключателя В1. В режиме передачи миниатюрный громкоговоритель переключается с выхода УЗЧ на вход и используется как динамический микрофон. Усиленный сигнал поступает на генератор 27мГц, производя модуляцию основной частоты.
В режиме приема схема работает как сверхрегнератор с очень большим усилением радиосигнала и прямым преобразованием его модуляции в сигнал звуковой частоты, после усиления в УЗЧ поступающий на громкоговоритель. В LC генераторе применен BC547(VT1), в усилителе звуковой частоты два BC547(VT2 – VT5) и два комплементарных BC557(VT3 – VT4). Все транзисторы лучше брать с буквой C(коэфф. усиления от 450). Резисторы можно взять любого типа с мощностью от 0,1 ватта, за исключением R3 – его мощность должна быть не менее 0,25 ватт.
Конденсаторы C1 – C11 слюдяные, C12 – C13 – оксидные(электролитические), любого типа. Катушка генератора L1 – 4 витка провода ПЭЛ -0,25 с отводом от одного витка, намотанная на каркасе диаметром 0,4 см, с подстроечным стержнем из феррита(от малогаб. импортного приемника). Катушка L2 – 1,5 витка на том же каркасе, тем же проводом. Антенной служит безкаркасная катушка – пружина диаметром 0,5 см содержащая 160 – 170 плотно намотанных витков провода ПЭВ 0,5 (виток, к витку). Длина такой антенны получается от 8 до 10см.
Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
12 шт. из магазина г.Ижевск2328 шт. со склада г.Москва,срок 3-4 рабочих дня
− +
В корзину
PNP транзистор общего применения
ХарактеристикиТехнические ∙ Корпус TO-92 ∙ Распиновка CBE
Электрические ∙ Мощность 0.5Вт ∙ Ток коллектора -0.1А ∙ Обратный ток коллектор-база -0.015uA ∙ Напряжение эмиттер-база -5В ∙ Напряжение коллектор-эмиттер 45В ∙ Напряжение коллектор-база -50В ∙ Hfe min 420 ∙ Hfe max 800
Общие ∙ Производитель Semtech
Выбор p-канальных и n-канальных MOSFET
Невозможно создать p-канальный силовой MOSFET, который имел бы такие же электрические характеристики, как и n-канальный MOS-FET. Поскольку подвижность носителей заряда в n-канальном силовом MOSFET в 2,5–3 раза выше, то для обеспечения одного и того же сопротивления в открытом состоянии Rds(on), размер кристалла p—канального MOSFET должен быть в 2,5–3 раза больше, по сравнению с n-канальным транзистором. Вследствие большей площади кристалла p-канальные MOSFET-транзисторы имеют меньшее тепловое сопротивление и более высокие значения допустимого тока. Но их динамические характеристики (емкость, заряд затвора и др.) зависят от размера кристалла.
На низких частотах переключений, при которых доминируют потери проводимости, p-канальный MOSFET должен иметь тот же уровень номинального тока ID25, что и n-канальный транзистор. Если два транзистора имеют одинаковый номинальный ток ID25, нагрев их кристаллов будет практически одинаков при одинаковой температуре корпуса и одинаковом токе. В этом случае оптимальный размер кристалла p-канального MOSFET составит уже 1,5–1,8 от размера кристалла n-канального транзистора.
На высоких частотах переключения, где доминируют динамические потери, p-канальный MOSFET должен иметь ту же величину заряда затвора, что и n-канальный транзистор. Если два транзистора имеют одинаковый заряд затвора и управляются одинаково, их динамические потери близки. В этом случае p-канальный MOSFET имеет тот же размер кристалла, что и n-канальный, но его номинальный ток ID25 может быть меньше, чем у n-канального.
Для работы в линейном режиме необходимо соответствие p-канального и n-канального транзистора по FBSOA (области безопасной работы) в реальном режиме
Это часто означает соответствие по номинальной рассеиваемой мощности ID25, но, кроме того, нужно обращать внимание на физическую способность транзистора работать в линейном режиме
В реальных приложениях необходимо тщательно выбирать p-канальный MOSFET-тран-зистор по номинальному току ID25 или заряду затвора Qg. Приложений, в которых требуется одинаковое сопротивление в открытом состоянии Rds(on), не так много.
Схемы с использованием TL431
Микросхема может использоваться во многих разных схемах блоков питания. Это могут быть как регулируемые блоки питания, так и зарядные устройства к аккумуляторам. Давайте разберем несколько базовых, типовых схем, которые можно модернизировать, и на базе которых можно создавать свои замыслы и творения.
Стабилизатор напряжения на TL431 (2.5-36В, 100mA)
Данная схема позволяет заменить обыкновенный стабилитрон. Вы можете менять выходное напряжение путем изменения сопротивления резисторов R1 и R2. Чтобы провести расчет сопротивления, рекомендуем прибегнуть к использованию формулы, указанной ниже:
Стабилизатор напряжения с увеличенным максимальным током (2.5-36В)
Максимальный выходной ток TL431 равен 100мА. Однако, если вашему проекту нужен больший показатель выходного тока, то советуем вам использовать транзистор: тогда максимальный ток будет зависеть от его характеристик. Формула для расчета сопротивлений резисторов остается такой же.
Подобные схемы часто используются с другими микросхемами.К сожалению, большинство из них просто не могут пропускать высокий ток, поэтому, чтобы решить такую проблему, в дело вступает управляющий транзистор. В таком случае максимальный ток ограничивается его свойствами. Главная задача здесь — правильный подбор транзистора под управляющее напряжение на его базе.
Лабораторный блок питания на TL431 с защитой
Данная схема представляет собой регулируемый блок питания, который способен выдавать до 30Вт. И помимо этого имеет встроенную защиту от перегрузки. В случае, если ток начнет превышать допустимое значение на транзисторе Т2, то на ЛБП произойдет прекращение подачи напряжения, о чем будет сигнализировать загоревшийся светодиод.
Не стоит забывать использовать охлаждение в виде радиатора, ведь компоненты во время пиковых нагрузок будут быстро нагреваться, и со временем при частых перегревах, выходить из строя.
Стабилизатор тока на TL431 (Светодиодный драйвер)
Чаще всего стабилизаторы тока используются для запитывания светодиодов и светодиодных лент. Схема тут элементарная — вам понадобятся всего лишь пара резисторов и один транзистор.
Индикатор напряжения
Схема может понадобиться, когда вам необходимо следить за тем, чтобы напряжение не выходило за верхние и нижние пределы. Эти пределы задаются сопротивлением резисторов, по формуле, указанной ниже.
Данную схему можно модернизировать путем добавления пищалок или других звуковых устройств. Таким образом точно не получится пропустить сигнал о неправильном напряжении.
Таймер задержки на TL431
Универсальная микросхема, на которой есть возможность реализовать даже схему таймера задержки. Все, что вам понадобится — это пара резисторов и конденсатор. Их номиналы необходимо рассчитать по формуле, чтобы получить требуемое время задержки (формула указана ниже).
Такая схема возможна благодаря очень низкому показателю входного тока (4мкА). Во время замыкания главного контакта, транзистор начинает производить зарядку. После достижения показателя в 2.5В он открывается, и ток при содействии оптопаровому светодиоду (оптрону) начинает течь, от чего на внешней цепи происходит замыкание.
Зарядное устройство для литиевых аккумуляторах на TL431 и LM317
Эта простейшая схема позволяет правильно заряжать литиевые аккумуляторы. В этой зарядке TL431 используется в качестве источника опорного напряжения, а LM317 в качестве источника тока. Устройство заряжает аккумуляторы методом CC CV, означает, как все знают, постоянный ток (Constant Current), постоянное напряжение (Constant Voltage).
Входное напряжение для этой схемы — 9-20В. Сначала аккумулятор заряжается постоянным током, который поддается изменению, меняя сопротивление резистора R5. После того, как аккумулятор достигнет напряжения около 4.2В, он начинает заряжаться постоянным напряжением.
Учтите, что очень важно перед использованием настроить устройство: без нагрузки необходимо подстроить переменный резистор RV1 так, чтобы на выходе напряжение было равно 4.2 Вольта.
Полезные страницы
- Набор GyverKIT – большой стартовый набор Arduino моей разработки, продаётся в России
- Каталог ссылок на дешёвые Ардуины, датчики, модули и прочие железки с AliExpress у проверенных продавцов
- Подборка библиотек для Arduino, самых интересных и полезных, официальных и не очень
- Полная документация по языку Ардуино, все встроенные функции и макросы, все доступные типы данных
- Сборник полезных алгоритмов для написания скетчей: структура кода, таймеры, фильтры, парсинг данных
- Видео уроки по программированию Arduino с канала “Заметки Ардуинщика” – одни из самых подробных в рунете
- Поддержать автора за работу над уроками
- Обратная связь – сообщить об ошибке в уроке или предложить дополнение по тексту ()
BDP951 Datasheet (PDF)
..1. Size:41K siemens bdp951.pdf
BDP 951NPN Silicon AF Power Transistors For AF drivers and output stages High collector current High current gain Low collector-emitter saturation voltage Complementary type: BDP952…BDP956 (PNP)Type Marking Ordering Code Pin Configuration PackageBDP 951 BDP 951 Q62702-D1339 1 = B 2 = C 3 = E 4 = C SOT-223BDP 953 BDP 953 Q62702-D1341 1 = B 2 = C 3 = E 4 = C SOT
9.1. Size:40K siemens bdp952.pdf
BDP 952PNP Silicon AF Power Transistor For AF drivers and output stages High collector current High current gain Low collector-emitter saturation voltage Complementary type: BDP951…BDP955 (NPN)Type Marking Ordering Code Pin Configuration PackageBDP 952 BDP 952 Q62702-D1340 1 = B 2 = C 3 = E 4 = C SOT-223BDP 954 BDP 954 Q62702-D1342 1 = B 2 = C 3 = E 4 = C SOT-
9.2. Size:523K infineon bdp947 bdp949 bdp953.pdf
BDP947_BDP949_BDP953Silicon NPN Transistors For AF driver and output stages43 High collector current21 High current gain Low collector-emitter saturation voltage Complementary types: BDP948, BDP950, BDP954 (PNP) Pb-free (RoHS compliant) package Qualified according AEC Q101Type Marking Pin Configuration PackageBDP947 BDP947 1=B 2=C 3=E 4=C — — S
9.3. Size:532K infineon bdp948 bdp950 bdp954.pdf
BDP948_BDP950_BDP954PNP Silicon AF Power Transistors For AF driver and output stages43 High collector current21 High current gain Low collector-emitter saturation voltage Complementary types: BDP947, BDP949 BDP953 (NPN) Pb-free (RoHS compliant) package Qualified according AEC Q101Type Marking Pin Configuration PackageBDP948 BDP948 1=B 2=C 3=E 4