Транзистор bd681: области применения и характеристики

Транзистор bd140

Телекоммуникации и связь

Транзистор BD681 имеет широкие области применения в телекоммуникациях и сфере связи. Благодаря своим электронным свойствам, он может использоваться в различных устройствах и системах для передачи и обработки сигналов.

Одним из основных применений транзистора BD681 является усиление и коммутация сигналов в аудиоусилителях. Он может использоваться для усиления звуковых сигналов и повышения громкости звуковой системы. Благодаря своей способности коммутировать сигналы, он может использоваться для переключения между разными источниками звука.

Транзистор BD681 также может быть использован в телекоммуникационных приемниках и передатчиках. Он может усиливать слабые радиосигналы для получения лучшего качества передачи и приема сигналов. Также он может использоваться для коммутации между разными частотными каналами в радиоустройствах.

Еще одной областью применения транзистора BD681 в телекоммуникациях является создание сигнальных генераторов. Он может использоваться для генерации и модуляции сигналов различных частот и форм. Это позволяет использовать его в различных системах связи и передачи данных.

Транзистор BD681 также может быть использован в силовых устройствах для обеспечения управления электромагнитными реле и соленоидами. Это особенно актуально в системах телекоммуникаций, где нужна высокая степень надежности и точности управления.

В целом, транзистор BD681 имеет широкий спектр применения в телекоммуникациях и связи благодаря своим уникальным электронным свойствам. Он может использоваться для усиления, коммутации и генерации сигналов различных частот и форм, а также для управления силовыми устройствами.

Микросхемы

Микросхемы для блоков питания — онлайн справочник

  • HA16107 HA16108
  • HM9207
  • IX1779ce
  • KA3882
  • M67209
  • MA2830
  • MA2831
  • STK730-080
  • STK7348
  • STR451
  • STR6307
  • STR10006
  • STR11006
  • STR40115
  • STR50103
  • STR50115
  • STR54041
  • STR80145
  • STRD1816
  • STRD6004
  • STRD6601
  • STR-M6549
  • STR-S5941
  • TDA4600
  • TDA4601
  • TDA4601b
  • TDA4605
  • TDA8380
  • TEA1039
  • TEA2018
  • TEA2019
  • TEA2162
  • TEA2164
  • TEA2260
  • TEA2262
  • TEA5170
  • UAA4006
  • Шим-контроллер UC3842
  • UC3844, UC3845, UC2844, UC2845
  • LNK623, LNK624, LNK625, LNK626

Микросхемы для фотовспышек

  • AT1450
  • BD4222
  • TPS65560

Стабилизаторы напряжения

  • Микросхемы стабилизаторов напряжения AN_ххх серии
  • Микросхемы стабилизаторов напряжения MC_ххх серии
  • Микросхемы стабилизаторов напряжения LM_ххх серии

Микросхемы выходного каскада кадровой развертки

  • Микросхемы LA7837, LA7838
  • LA7845
  • Микросхемы LA7875N, LA7876N
  • STK792-210
  • STK79315A

Микросхемы для аудио и радиоаппаратуры

  • ТЕА6310T
  • Микросхема TDA7386 4х канальный УМЗЧ

Драйверы

  • BD6735FV BD6736FV
  • DRV8833
  • LB1838m
  • LV8401
  • LV8011
  • LV8013T
  • LV8713T
  • MPC17511A

Отечественные микросхемы

Характеристики популярных аналогов

Наименование производителя: 2SA1178

  • Тип материала: Si
  • Полярность: PNP
  • Максимальная рассеиваемая мощность (Pc): 20 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 150 V
  • Макcимальный постоянный ток коллектора (Ic): 1 A
  • Предельная температура PN-перехода (Tj): 175 °C
  • Граничная частота коэффициента передачи тока (ft): 200 MHz
  • Ёмкость коллекторного перехода (Cc): 3 pf
  • Статический коэффициент передачи тока (hfe): 80
  • Корпус транзистора: TO126

Наименование производителя: 2SA1220

  • Тип материала: Si
  • Полярность: PNP
  • Максимальная рассеиваемая мощность (Pc): 20 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 120 V
  • Макcимально допустимое напряжение эмиттер-база (Ueb): 5 V
  • Макcимальный постоянный ток коллектора (Ic): 1.2 A
  • Предельная температура PN-перехода (Tj): 150 °C
  • Граничная частота коэффициента передачи тока (ft): 160 MHz
  • Ёмкость коллекторного перехода (Cc): 29 pf
  • Статический коэффициент передачи тока (hfe): 150
  • Корпус транзистора: TO126

Наименование производителя: 2SA1220A

  • Тип материала: Si
  • Полярность: PNP
  • Максимальная рассеиваемая мощность (Pc): 20 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 160 V
  • Макcимально допустимое напряжение эмиттер-база (Ueb): 5 V
  • Макcимальный постоянный ток коллектора (Ic): 1.2 A
  • Предельная температура PN-перехода (Tj): 150 °C
  • Граничная частота коэффициента передачи тока (ft): 160 MHz
  • Ёмкость коллекторного перехода (Cc): 30 pf
  • Статический коэффициент передачи тока (hfe): 150
  • Корпус транзистора: TO126

Наименование производителя: 2SA1486

  • Тип материала: Si
  • Полярность: PNP
  • Максимальная рассеиваемая мощность (Pc): 15 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 600 V
  • Макcимальный постоянный ток коллектора (Ic): 1 A
  • Предельная температура PN-перехода (Tj): 175 °C
  • Статический коэффициент передачи тока (hfe): 80
  • Корпус транзистора: TO126

Наименование производителя: 2SA1714

  • Тип материала: Si
  • Полярность: PNP
  • Максимальная рассеиваемая мощность (Pc): 12 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 100 V
  • Макcимально допустимое напряжение коллектор-эмиттер (Uce): 100 V
  • Макcимально допустимое напряжение эмиттер-база (Ueb): 8 V
  • Макcимальный постоянный ток коллектора (Ic): 3 A
  • Предельная температура PN-перехода (Tj): 150 °C
  • Статический коэффициент передачи тока (hfe): 2000
  • Корпус транзистора: TO-126

Структура и типы транзистора BD681

Транзистор BD681 относится к типу биполярных транзисторов, которые имеют структуру, состоящую из трех слоев полупроводникового материала: эмиттера, базы и коллектора.

BD681 имеет типоразмер TO-126 и доступен в двух базовых вариантах: NPN и PNP. В NPN-транзисторе эмиттером служит область с положительной проводимостью (n-type), а в PNP-транзисторе эмиттером служит область с отрицательной проводимостью (p-type).

Структура NPN-транзистора BD681:

  • Эмиттер (E): область с положительной проводимостью, на которую подается ток эмиттера;
  • База (B): область с отрицательной проводимостью, через которую управляется ток коллектора;
  • Коллектор (C): область с положительной проводимостью, которая отводит ток коллектора.

Структура PNP-транзистора BD681:

  • Эмиттер (E): область с отрицательной проводимостью, на которую подается ток эмиттера;
  • База (B): область с положительной проводимостью, через которую управляется ток коллектора;
  • Коллектор (C): область с отрицательной проводимостью, которая отводит ток коллектора.

Транзистор BD681 является универсальным усилительным транзистором и находит широкое применение в различных устройствах, включая усилители сигналов, стабилизаторы напряжения, блоки питания, ключи и т.д.

BD435 Силовой транзистор NPN — техническое описание

23 марта 2022 г. 17 апреля 2021 г. Ваджид Хуссейн

BD435 — это кремниевые силовые NPN-транзисторы с эпитаксиальной базой в пластиковом корпусе Jedec SOT-32, предназначенные для использования в линейных и импульсных устройствах средней мощности. BD435 особенно подходит для использования в выходных каскадах автомобильных радиоприемников.

Силовой транзистор?

Транзисторы представляют собой полупроводниковые электронные устройства с тремя выводами, которые можно использовать в качестве переключателей или усилителей.

Buy from Amazon

BD435 Pin Configuration

Pin No Pin Name
1 Emitter
2 Collector
3 База

BD435 Основные характеристики

  • Поддерживающее напряжение коллектор-эмиттер –

0060
Type of Transistor: BJT
Type Designator: BD435
Material of Transistor: Si
Polarity: NPN
Package: TO126

BD435 Specification

Ic (mA) Pd Vce (max) Vcb hfe @ Ic FT
4 36 32 32 40-130 10 3

BD435 Equivalent Alternate

BD410, BD414, BD433, BD433-25, BD434, BD436

  • Среднемощный линейный
  • Переключение приложений
  • Усилитель общего назначения

Скачать техпаспорт

Поиск

Возможна отправка в тот же день.

Тщательно выберите номер детали, производителя и упаковку из приведенной ниже таблицы, а затем добавьте в корзину, чтобы перейти к оформлению заказа.

Купите сейчас, вам понравится ✓Отправьте заказ в тот же день! ✓Доставка по всему миру! ✓Ограниченная распродажа ✓Легкий возврат.

Обзор продукта
Название продукта Поиск
Доступное количество Возможна отправка немедленно
№ модели.
Код ТН ВЭД 8529908100
Минимальное количество Начиная с одной детали
Атрибуты продукта
Категории

Поиск

идентификатор продукта
артикул
gtin14
мпн
Статус детали Активный

Все основные кредитные и дебетовые карты через PayPal.

Мы никогда не храним данные вашей карты, они остаются в Paypal

Товары отправляются почтовыми службами и оплачиваются по себестоимости. Товары будут отправлены в течение 1-2 рабочих дней после оплаты. Доставка может быть объединена при покупке большего количества. Другие способы доставки могут быть доступны при оформлении заказа — вы также можете сначала связаться со мной для получения подробной информации.

Судоходная компания Расчетное время доставки Информация об отслеживании
Плоская транспортировочная 30-60 дней Нет в наличии
Заказная авиапочта 15-25 дней В наличии
ДХЛ/ЭМС/ФЕДЕРАЛ ЕХПРЕСС/ТНТ 5-10 дней В наличии
Окончательное время доставки Может быть задержано вашей местной таможней из-за таможенного оформления.

Благодарим за покупку нашей продукции на нашем веб-сайте. Чтобы иметь право на возмещение, вы должны вернуть продукт в течение 30 календарных дней с момента покупки. Товар должен быть в том же состоянии, в котором вы его получили, и не иметь никаких повреждений. После того, как мы получим ваш товар, наша команда профессионалов проверит его и обработает ваш возврат. Деньги будут возвращены на исходный способ оплаты, который вы использовали во время покупки. Для платежей по кредитной карте может потребоваться от 5 до 10 рабочих дней, чтобы возмещение появилось в выписке по кредитной карте. Если продукт каким-либо образом поврежден или вы инициировали возврат по прошествии 30 календарных дней, вы не имеете права на возмещение. Если что-то неясно или у вас есть дополнительные вопросы, не стесняйтесь обращаться в нашу службу поддержки клиентов.

Подробнее о программе защиты покупок PayPal. Получите заказанный товар или верните деньги.

Расположен в Шэньчжэне, центре электронного рынка Китая.
100% гарантия качества компонентов: Оригинал.
Достаточный запас по вашему срочному требованию.
Опытные коллеги помогут вам решить проблемы, чтобы снизить риск при производстве по требованию.

Более быстрая доставка: компоненты, имеющиеся на складе, могут быть отправлены в тот же день.
Круглосуточно.

Каковы ваши основные продукты?

Интегральные схемы (ИС) Дискретный полупроводник Потенциометры, регулируемые R
Звук специального назначения Аксессуары Реле
Часы/хронометраж Мостовые выпрямители Датчики, преобразователи
Сбор данных Диакс, Сидак Резисторы
Встроенный Диоды Катушки индуктивности, катушки, дроссели
Интерфейс МОП-транзисторы Фильтры
Изоляторы — драйверы затворов БТИЗ Кристаллы и осцилляторы
Линейный JFET (эффект поля перехода) Соединители, межсоединения
Логика ВЧ полевые транзисторы Конденсаторы
Память ВЧ-транзисторы (BJT) Изоляторы
PMIC SCR Светодиод
Транзисторы (БЮТ)
Транзисторы
Триаки

Все цены указаны за единицу в долларах США (USD).

Цена на некоторые детали нестабильна в зависимости от рынка, пожалуйста, не стесняйтесь обращаться к нам, чтобы узнать самую последнюю и лучшую цену.

PayPal, кредитные карты через PayPal, банковский перевод, Western Union.
Покупатель несет ответственность за все расходы по доставке.
Пожалуйста, свяжитесь с нами, если вы предпочитаете другой способ оплаты.

Если есть какие-либо проблемы с качеством, пожалуйста, убедитесь, что все эти предметы должны быть возвращены в их первоначальном состоянии, чтобы иметь право на возмещение или замену.
(Любые использованные или поврежденные предметы не могут быть возвращены или заменены).

Минимальный объем заказа от ОДНОЙ штуки.
Вы можете купить столько, сколько захотите.

Мы отправим вам детали в тот же день после получения оплаты.

Цветомузыкальная приставка на П213.

Очень несложную цветомузыкальную приставку можно собрать на трех транзистрах П213. Три раздельных усилительных каскада предназначены для усиления трех полос звуковой частоты. Каскад на транзисторе VT1 усиливает сигнал на частоте свыше 1000Гц, на транзисторе VT2 – от 1000 до 200Гц, на транзисторе VT3 – ниже 200гЦ. Разделение частот осуществляется простыми RC- фильтрами.

Входной сигнал берется с выхода акустических колонок. Его уровень регулируется с помощью потенциометра R1. Для подстройки уровня яркости каждого канала используются подстроечные резисторы R3, R5, R7. Смещение на базах транзисторов определяется значениями резисторов R2, R4, R6. Нагрузкой каждого каскада являются две параллельно включенные лампочки (6,3 В х 0,28 А). Питается схема от блока питания с выходным напряжением 8-9 В и максимальным током свыше 2А.

Транзисторы П213 могут иметь значительный разброс по усилению тока. Поэтому, значения резисторов R2, R4, R6 необходимо подбирать для каждого каскада — индивидуально. Ток коллектора при этом настраивается на такую величину, чтобы нити накала ламп немного светились в отсутствии входного сигнала. При этом транзисторы обязательно будут греться. Стабильность работы германиевых полупроводниковых приборов очень зависит от температуры. Поэтому, необходимо установить П213 на радиаторы — площадью от 75 кв.см.

Если же у вас, имеется какая-то старая, ненужная техника — можно попытаться добыть транзисторы (и другие детали) из нее. Транзисторы П213 можно найти радиоле Бригантина, приемнике ВЭФ Транзистор 17, приемниках Океан, Рига 101, Рига 103, Урал Авто-2. Транзисторы КТ815 в приемниках Абава РП-8330, Вега 342, магнитофонах «Азамат»(!), Весна 205-1, Вильма 204- стерео и т. д.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Эта страница показывает существующую справочную информацию о параметрах биполярного высокочастотного npn транзистора 2SC815

. Дана подробная информация о параметрах, схеме и цоколевке, характеристиках, местах продажи и производителях. Аналоги этого транзистора можно посмотреть на отдельной странице.

Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремний (Si) Структура полупроводникового перехода: npn

Производитель: NEC Сфера применения: Medium Power, High Voltage Популярность: 13955 Условные обозначения описаны на странице «Теория».

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач. И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):

Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора — выходной. Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы

I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

Для нее также указывается семейство характеристик для разных значений тока базы:

Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано.

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

I_к = \beta I_б

Двигаемся дальше

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора.

И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды. Разным значениям температуры соответствуют разные кривые.

Зарубежные прототипы

  • КТ815Б — BD135
  • КТ815В — BD137
  • КТ815Г — BD139

14 thoughts on “ КТ815 параметры ”

Мощным данный транзистор назвать нельзя, не смотря на 8-ку в маркировке. Он ближе к средней мощности, а в мощных схемах используется как предварительный для 819-х и выше

Как основной недостаток, я бы выделил разброс коэффициента усиления, а в некоторых схемах это важно. Почему то не приведена граничная частота, а она тоже не очень высокая. Одним словом — обычный, среднепараметризованный транзистор для бытового использования

Да, еще там начальная нелинейность подзатянута, не для всех классов усиления хороши

Одним словом — обычный, среднепараметризованный транзистор для бытового использования. Да, еще там начальная нелинейность подзатянута, не для всех классов усиления хороши.

Граничная частота КТ815 для схемы с общим эмиттером составляет 3 МГц. p. s. Как и всех отечественных «чисто гражданских» транзисторов разброс параметров КТ815 очень большой.

Предполагаю, что гражданскими транзисторами «КТ» являлась отбраковка военных транзисторов «2Т». Протестировали кристаллы, те что получше — в металл, похуже в пластик. Именно из-за такого разброса на заводах была даже такая профессия «регулировщик».

На алиэкспрессе можно и на перемаркированные детали попасть. Я покупаю только если есть положительные отзывы. Думаю цены на BD139 и BD140 такие потому что раритет. Если в схеме нужны биполярные на небольшую мощность, я ставлю что-то из серии BCP51 — BCP56. И в Китае делают хорошую продукцию, но только под контролем американских, европейский, японских или южнокорейских фирм

Контролировать работу необходимо, причем не только китайских, но и всех узко… вы понимаете. А делать это сейчас очень и очень несложно, не выходя из, скажем AMD-шного офиса, находящегося в Германии почему-то. Все линии автоматизированы, все данные поступают на сервер и могут контролироваться в реальном режиме времени из любой точки мира. К нему-же и видео наблюдение подстегнуто. Смотришь, пошел курить опий, берешь микрофон и, на доступном японамамском, вежливо просишь вернуться назад. Загранкомандировки технологам оплачивать не нужно.

Возможно, что и перемаркировка. Но, когда только сделал характериограф, из любопытства тыкал в него все что под руку попадалось, в том числе и транзисторы с распая корейской аудио-видео аппаратуры. Транзисторы из одного раскуроченного музыкального центра LG имеют близкие параметры, а те же транзисторы из другого МЦ сделанного годом-двумя раньше отличаются от них как небо и земля. Транзисторы из одной партии похожи друг на друга, а вот когда они из разных партий, тут уже возможны варианты…

Старый, добрый КТ815, именно на нём делал свои первые самоделки, они встречались практически во всей советской аппаратуре. Даже сейчас, если порыться в хламе, штук 10-15 выпаять можно.

Транзистор удобен в практике. Их много почти у каждого в загашнике. Относительно не большой, и мощный, не дорогой. Разной проводимости КТ814 (p-n-p) и КТ815 (n-p-n).

По характеристикам указана предельная температура 150 °C, но на практике сталкивался с выходом из строя в блоках питания КТ815 уже при температуре близкой к 100 °C, возникала холостая проводимость между К-Э. При перегревах выходных каскадов на КТ815 и КТ814 в УМЗЧ иногда происходили необратимые изменения ВАХ, но усилитель продолжал дальше работать с незначительными искажениями. Часто использовал такие транзисторы в схемах стабилизации частоты вращения моторчиков на старых магнитолах, и в коммутации к радиоуправляемым моделям.

Зачем нужна маркировка

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Маркировка на практике

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся

Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений

Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.

Разнообразные корпуса транзисторов.

Маркировка SMD компонентов

SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.

Код Сопротивление
101 100 Ом
471 470 Ом
102 1 кОм
122 1.2 кОм
103 10 кОм
123 12 кОм
104 100 кОм
124 120 кОм
474 470 кОм

Маркировка импортных SMD

Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.

Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.

Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.

Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.

Базовые характеристики

Вот некоторые из основных характеристик транзистора BD681:

  • Тип: NPN
  • Максимальное напряжение коллектор-эмиттер (VCEO): 100 В
  • Максимальный ток коллектора (IC): 4 А
  • Мощность: 40 Вт
  • Максимальная температура перехода (Tj): 150 °C
  • Коэффициент усиления по току постоянному току (hFE): от 25 до 160

Транзистор BD681 имеет три вывода: коллектор (C), база (B) и эмиттер (E). Он обладает высокой коммутационной способностью и способен работать со значительными токами и напряжениями.

BD681 может быть использован в различных приложениях, включая усилительные схемы, широтно-импульсные модуляторы (PWM) и другие коммутационные схемы. Он широко применяется в электронике и может быть использован как в самодельных проектах, так и в промышленных устройствах.

Маркировка

Транзистор промаркирован по система Pro Electron, применяющейся в Европе и европейской ассоциацией производителей радиокомпонентов. Первые две “BD ”указывают на то, что перед нами кремнёвый, мощный транзистор низкой частоты. В европейской Pro Electron нет транзисторов средней мощности, по ней они маркируются маломощными или мощными. Далее идет серийный номер устройства “140”.

Первые выпуски bd140 проводила компания Philips. По некоторым сведениям, эта она прекратила их выпуск. Однако в некоторых магазинах еще можно найти ее устройства. Из-за хорошего качества сборки и своих характеристик они будут стоить дороже своих клонов.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер
обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В
выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении
таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется
напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на R. Он необходим, чтобы при подаче управляющего напряжения
не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый
ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

Главное — не превысить допустимый
ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора
hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Схема «зарядки» для телефона.

R1 — 1 Ом, 1Ватт. R2 — 20 кОм. R3 — 680 кОм. R4 — 100 кОм. R5 — 43 Ом. R6 — 5,1 Ом. R7 — 33 Ом. R8 — 1 кОм. R9 — 1,5 кОм. C1 — 22 мФ,25в(оксидный). C2 — 1 нФ, 400в. C3 — 3,3 нФ, 1000в. C4 — 2,2 мФ,400в(оксидный). C5 — 100 мФ,25в(оксидный). VD1 — стабилитрон 5,6в. VD2,VD3 — диод 1N407. VD4 — диод 1N4937. VD5 — индикаторный светодиод. Транзистор — MJE13001(13001), MJE13003(13003), самый надежный вариант — MJE13005(13005).

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

13001 – кремниевый, эпитаксильно-планарный биполярный транзистор n-p-n проводимости. Используется в маломощных импульсных блоках питания бытовых приборов, зарядках, энергосберегающих, светодиодных лампах и других высоковольтных устройствах. Так же его можно встретить в схемах низкочастотных усилителей в качестве усилителя звукового сигнала.

Габариты транзистора КТ361 и КТ361-1

Тип корпуса транзистора КТ-13. Масса одного транзистора не более 0,2 г. Величина растягивающей силы 5 Н (0,5 кгс). Минимальное расстояние места изгиба вывода от корпуса – 1 мм (на рисунке обозначено как L1). Температура пайки (235 ± 5) °С, расстояние от корпуса до места пайки 1 мм, продолжительность пайки (2 ± 0,5) с. Транзисторы должны выдерживать воздействие тепла, возникающего при температуре пайки (260 ± 5) °С в течение 4 секунд. Выводы должны сохранять паяемость в течение 12 месяцев с даты изготовления при соблюдении режимов и правил выполнения пайки, указанных в разделе «Указания по эксплуатации». Транзисторы устойчивы к воздействию спирто-бензиновой смеси (1:1), а также пожаробезопасны. Габаритные размеры транзистора КТ361 и КТ361-1 приведены на рисунке 1.

Рисунок 1 – Маркировка, цоколёвка и габаритные размеры транзистора КТ361 и КТ361-1

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: