Характеристики транзистора bd140

Назначение, характеристики и аналоги транзистора 13001

SOT-23: аналоги

Согласно функционалу, принцип работы рассматриваемых регуляторов аналогичен микросхемам ШИМ xx384x, устойчивым и надежным.

С заменой или выбором аналогов таких регуляторов часто возникают трудности из-за кодировки при обозначении видов микросхем. К тому же, существует много фирм-производителей элементов, которые не выкладывают документацию в открытый доступ. Дело в том, что не каждый изготовитель приборов предоставляет схемы в сервису по ремонту. Так что ремонтники вынуждены осваивать возможные варианты схем по имеющимся компонентам и монтажу именно на плате.

В практическом применении обычно используются ШИМ-микросхемы с кодировкой EAxxx. Вы не найдете официальных документов к ним, но есть картинки из PDF от System General.

Взгляните на таблицу, по которым можно подобрать аналоги с соответствующей выводной цоколевкой. Они отличаются применением 3-го вывода.

ШИМ-регуляторы (PWM), где по-другому используется вывод 3, таблица:

При применении всех указанных ШИМ, присмотритесь к выводу 3. С его помощью можно обеспечить тепловую защиту и избежать увеличения напряжения на входе. Допускается фиксированная или регулируемая конденсатором частота.

Распиновка

В советское и перестроечное время производился в корпусе КТ-13, который никогда не использовался зарубежными производителями. Притом, что КТ315 рабочая лошадка советской радиопромышленности. В наши дни, его продолжают выпускать в корпусе КТ-26 (TO-92) и КТ-46А (SOT-23), а так же в ограниченных количествах в КТ-13. Посмотрите внимательней на фотографии цоколевки КТ315 в разных корпусах и на буквы обозначающие назначение его электродов. 

Несмотря на внешние различия транзисторов, их распиновка совпадает. Так, если смотреть на маркировку любого из них, то электроды слева на право будут всегда иметь следующее назначение: эмиттер (Э), коллектор (К) и база (Б), соответственно. Исходя из этого, становится понятной аббревиатура из трех букв «ЭКБ», которая встречается на технических форумах.

Режимы работы в схеме с ОЭ

Работу полупроводниковых устройств интересно анализировать с помощью входных/выходных вольт-амперных характеристик (ВАХ). На них видно изменение значений параметров, от которых зависит его состояние: в каких случаях он открывается, когда происходит усиление сигнала и др. На рисунке представлены графики ВАХ для схемы включения КТ315Г с общим эмиттером (ОЭ), на её выход подано постоянное питание Uп. Разберемся как она работает в таком режиме. 

Если транзистор используется в качестве электронного ключа, то в закрытом состоянии (режим отсечки) базовое напряжение на входе (UБЭ) не должно превышать 0.5 В. Токи базы IБ и коллектора IК незначительные, т.е. практически отсутствуют.

Для открытия транзистора (режим насыщения) необходимо поднять входное напряжение UБЭ с 0.6 до 0.8В. Этим нужно добиться увеличения базового тока IБ максимум до 2 мА, путем снижения сопротивления переменного ограничительного резистора RБ. При этом IК может расти до 100 мА, а UКЭ на p-n-переходе должно находится на уровне до 0.4 В.

В промежутке между открытым и закрытым состоянием транзистор используется как усилитель слабых сигналов – активный режим. Используя эту информацию можно создавать интересные схемы с этим устройством. Например такие, как в представленном видеоролике.

Электрические параметры и предельные значения допустимых режимов работы транзистора ГТ308А.

Обозначение

   H21э

Uкб=-1 В; Iэ=10
мА;
f=50 Гц  

qокр=25 °С

qокр=70 °С

qокр= -60 °С

      20…75

      20…200

³ 15

   H21э

Uкб=-5 В;  Iэ=5
мА;

f=20 МГц

³ 4.5

   Ikб0,

   МкА

-60 °С £qокр £ 25 °С

Uкб= -5 В;

Uкб= -15 В;

qокр=70 °С; Uкб= — 10 В;

£ 2

£ 5

£ 90

  Iэб0,

МкА

Uбэ= -2 В

Uбэ= -3 В

Uкб= -5 В; Iэ=5
мА;

f=20 МГц;

£ 50

£1000

³4.5

Кш,дБ

Uкб= -5 В; Iэ=5
мА;

f=1.6 МГц;

           —

Uкэ0.н,    В

Iк=50 мА; Iб= 3 мА

         — 1.5

Uбэ.н,В

Iк=10 мА; Iб=1
мА;

         — 0.5

  Uкб0.

Max,В

qокр £ 45 °С

          -20

Ск,пФ

Uкб= -5 В; f=5 МГц;

£ 8

Сэ,пФ

Uэб= -1 В; f=5 МГц;

£ 25

tрас.мкc

Iк=50 мА; Iб=4
мА;

tи= 5 мкс; f=1..10 МГц;

£ 1

tк, пс

Uкб= -5 В; Iэ=5 мА; f=5
МГц;

          400

*KURSOVOY PROEKT PO OKPRTU*

* SHPAK  gr.940103*

R1 2 3 22K

R2 2 0 22K

R3 3 4 3K

R4 5 0 2K

R5 5 7 2K

R6 3 6 510

R7 8 10 1K

R8 9 0 270

R9 3 10 62K

R10 10 0 20K

R11 3 11 310

R12 12 0 170

R13 13 0 22K

.param k=1

.step param k list
0.8 2 5

C1 1 2 5.0UF

C2 6 0 10UF

C3 7 8 5.0UF

C4 8 9 {K*160PF}

C5 9 10 {K*160PF}

*C6 3 O 10UF

C7 11 13 10UF  

Q1 4 2 5 KT315a

Q2 7 4 6 KT361a

Q3 11 10 12 KT315a

.model KT315a NPN

.model KT361a PNP

VS 3 0 DC 12V

VIN 1 0 AC 0.01

.AC DEC 50 1khz
500MEGHZ

.DC VS 0.5 20.5 5

.Tran 0.5us 4us

.Four 84KHZ v(13)

.PROBE

.PRINT AC V(13)

.END

BJT MODEL
PARAMETERS

KT315a          KT361a         

NPN             PNP            

IS  
100.000000E-18  100.000000E-18

BF  
100             100           

NF     1              
1           

BR    
1               1           

NR    
1               1           

SMALL SIGNAL
BIAS SOLUTION       TEMPERATURE =   27.000 DEG C  

NODE  
VOLTAGE                                                           NODE  
VOLTAGE

(1)         
0.0000

(2)         
5.9318

(3)       12.0000

(4)      
10.1990     

(5)         
5.1700

(6)       
10.9910

(7)         
9.0879

(8)         
1.9415     

(9)         
0.0000

(10)       
1.9415

(11)        9.9800

(12)       
1.1188     

(13 )       
0.0000

HARMONIC  
FREQUENCY    FOURIER    NORMALIZED    PHASE        NORMALIZED

NO        
(HZ)     COMPONENT    COMPONENT    (DEG)       PHASE (DEG)

1    
8.400E+04    9.788E-10    1.000E+00   -1.522E+02    0.000E+00

2    
1.680E+05    5.114E-10    5.225E-01    1.452E+02    2.974E+02

3    
2.520E+05    3.349E-11    3.422E-02    7.207E+01    2.243E+02

4    
3.360E+05    2.251E-10    2.300E-01   -1.576E+02   -5.391E+00

5     4.200E+05   
2.044E-10    2.088E-01    1.381E+02    2.903E+02

6    
5.040E+05    3.083E-11    3.150E-02    5.564E+01    2.079E+02

7    
5.880E+05    1.164E-10    1.190E-01   -1.604E+02   -8.126E+00

8    
6.720E+05    1.236E-10    1.263E-01    1.320E+02    2.842E+02

9    
7.560E+05    2.746E-11    2.805E-02    4.143E+01    1.937E+02

HARMONIC  
FREQUENCY    FOURIER    NORMALIZED    PHASE        NORMALIZED

NO        
(HZ)     COMPONENT    COMPONENT    (DEG)       PHASE (DEG)

1    
8.400E+04    9.539E-10    1.000E+00   -1.545E+02    0.000E+00

2    
1.680E+05    5.184E-10    5.435E-01    1.395E+02    2.939E+02

3    
2.520E+05    7.710E-11    8.082E-02    4.980E+01    2.043E+02

4    
3.360E+05    1.862E-10    1.952E-01   -1.568E+02   -2.275E+00

5    
4.200E+05    1.839E-10    1.928E-01    1.294E+02    2.839E+02

6    
5.040E+05    5.561E-11    5.830E-02    2.306E+01    1.775E+02

7    
5.880E+05    9.593E-11    1.006E-01   -1.493E+02    5.203E+00

8     6.720E+05   
1.003E-10    1.052E-01    1.266E+02    2.811E+02

9    
7.560E+05    4.096E-11    4.295E-02    5.142E+00    1.596E+02

HARMONIC  
FREQUENCY    FOURIER    NORMALIZED    PHASE        NORMALIZED

NO        
(HZ)     COMPONENT    COMPONENT    (DEG)       PHASE (DEG)

1    
8.400E+04    8.378E-10    1.000E+00   -1.573E+02    0.000E+00

2    
1.680E+05    4.557E-10    5.439E-01    1.307E+02    2.880E+02

3    
2.520E+05    1.170E-10    1.396E-01    1.536E+01    1.727E+02

4    
3.360E+05    1.705E-10    2.035E-01   -1.402E+02    1.710E+01

5    
4.200E+05    1.384E-10    1.652E-01    1.326E+02    2.899E+02

6    
5.040E+05    6.087E-11    7.265E-02   -1.418E+01    1.431E+02

7    
5.880E+05    1.138E-10    1.359E-01   -1.355E+02    2.186E+01

8    
6.720E+05    8.210E-11    9.799E-02    1.407E+02    2.981E+02

9     7.560E+05    3.747E-11   
4.472E-02   -3.237E+01    1.249E+02

1. ОПИСАНИЕ СХЕМЫ:

Принципиальная схема проектируемого устройства
предстваляет собой трехкаскадный  усилитель выполненный на кремниевых
высокочастотных транзисторах малой мощности.  2 каскада на транзисторах типа
КТ315А, а один на транзисторе типа КТ361А, которые включены по каскадной схеме.

BD136 transistor electrical specification description/ application

In this section we try to explain the electrical specifications of the BD136 transistor device, it is very useful for a better understanding of this transistor device.

Voltage specs

The terminal voltage specs of this transistor are collector to base voltage is -45V, collector to emitter voltage is -45V, and emitter to base voltage is -5V.

The collector to emitter saturation voltage is -0.5V, it is the voltage always less than the base voltage and it is the region switching voltage value.

Overall voltage specifications of BD136 transistor indicate, that they had applications in project-based and small circuits.

Current specs

The collector current value is -1.5A, this is the maximum load capacity of the transistor, and the circuit had a load under this limit.

The pulsed collector current value is -3.0A, and the pulsed collector current value is been calculated at a specific condition temperature is been at the lowest value.

The base current value is -0.5A, the base current value is the maximum triggering current value of the BD136 transistor.

The current values of the BD136 transistor show that it is a device used for many current related applications.

Dissipation specs

The power dissipation of the BD136 transistor is 12.5W, it is the power dissipation of the device.

The BD136 is a medium-power device mainly used for multiple applications, so the TO-126 package will give it great support.

Current gain specs

The current gain value of the BD136 transistor is 25 to 250hFE, the amplification and voltage regulation based on this transistor is limited because of the low DC current gain values.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Маркировка SOT-23

Взгляните на таблицы, приведенные ниже. Там присутствует расшифровка кодов для нескольких корпусов.

Корпуса бывают:

  1. sot23-3.
  2. sot23-5.
  3. sot23-6.

Во время ремонта электронных устройств инженерам часто бывает трудно определить вид микросхемы в каждом из корпусов. Дело в том, что на заводах из-за маленьких размеров корпусов их специально кодируют. В таблицах есть разные виды микросхем, в частности:

  1. DC/DC.
  2. AC/DC.
  3. ШИМ(pwm).

Сборка транзисторов тоже отличается, а вот корпуса — похожи. Взгляните на рисунок — здесь видно, как располагаются выводы 3 видов корпусов.

Маркировочные коды ставят на корпусах. Один из элементов кода может быть отмечен знаком “.” Таким символом может быть заменено любое цифровое или буквенное обозначение. Оно может иметь отношение к номеру производственной серии, дате выпуска, так что периодически меняется.

Есть несколько аналогов, идентичных по распиновке. Они могут заменить оригинал, при этом дорабатывать схему или не нужно, или нужно по-минимуму. Однако ее сравнение с datasheet будет не лишним. Замену может осуществлять только инженер.

Расчет

Конечно, приведенные формулы дают приблизительный результат, так как параметры транзисторов имеют конструктивный разброс и зависят от температуры. Но эти расчеты позволяют получить начальную точку, с которой осуществляется тонкий подбор.

[Ток отпирания, мА] = [Напряжение насыщения база — эмиттер транзистора, В] / [Сопротивление R2, кОм] — [Ток управляющего электрода, мА]

Для аналога динистора ток управляющего электрода принимаем равным нулю.

[Отпирающее напряжение, В] = ([Ток отпирания, мА] + [Ток управляющего электрода, мА]) * [Сопротивление R2, кОм] + [Ток отпирания, мА] * ([Сопротивление R1, кОм] + [Сопротивление R3, кОм])

[Ток удержания, мА] = 2 * [Напряжение насыщения база — эмиттер транзистора, В] / [Сопротивление R2, кОм] — [Ток управляющего электрода, мА]

[Напряжение запирания, В] = [Напряжение насыщения база — эмиттер транзистора, В] + [Напряжение насыщения коллектор — эмиттер транзистора, В]

Как собрать корпус SOT23 собственноручно

Приготовьте 3 куска монтажного провода подходящей длины, желательно, МГТФ. Из них получатся выводы корпуса.

Для защиты сделайте небольшую зачистку на пару миллиметров со стороны, которая припаивается к корпусу.

Замкните концы кусочков провода на участке, который впаивают в плату и зафиксируйте, чтобы уравнять потенциалы.

С помощью тонкого пинцета сделайте из пластика корпус, и зажмите его так:

Наденьте на паяльник так называемое игольчатое жало, оно, как правило, есть в паяльных станциях.

Установите на станции минимальную температуру, чтобы паять только припой. Ее можно определить только экспериментально.

Возьмите кусок провода в одну руку, паяльник — в другую. Можно паять стандартным припоем из свинца. Ни в коем случае нельзя перегревать контакты корпуса, а контакты паяльника — распаяйте и подпаяйте провода для выводов. Они должны быть уложены в виду пучка.

Припаивайте провода в определенном порядке, начиная с истока, и заканчивая затвором.

Не прикасайтесь к корпусу руками, трогать можно только паяльник и провода. При необходимости поправьте с помощью пинцета положение корпуса.

Готово! Вы не просто собрали корпус, а теперь он выводной. Его можно использовать, как все остальные транзисторы МОП.

Транзисторы MOSFET в корпусе SOT-23

Фирма IR расширяет номенклатуру MOSFET в разных направлениях. Главным является усовершенствование электро параметров транзисторов, а именно:

  • снижение канального сопротивления;
  • паразитного сопротивления;
  • выводной емкости и индуктивности;
  • увеличение рабочего тока;
  • увеличение рабочего напряжения;
  • увеличение скорости действия.

Повышается эффективность применения корпусов в готовых устройствах, обеспечиваются высокие удельные показатели тока и передающейся мощности.

Сначала не планировались мощные применения транзисторов в корпусе SOT-23, так как он не может рассеивать больше количество тепла. Но при сильном уменьшении открытого сопротивления ключа появилась возможность серьезно увеличить спектр токов коммутации.

Благодаря невысокой цене, данный вид корпуса представляет интерес для мобильного сектора, бюджетных преобразователей напряжения с невысокой мощностью.

К транзисторам предъявляются следующие требования:

  1. Невысокое открытое сопротивление.
  2. Стабильность температуры, если не используется радиатор.
  3. Невысокий порог напряжения затвора.
  4. Бюджетная стоимость.

У нового семейства p- и n- канальных транзисторов от IR стандартный корпус имеет очень низкое открытое сопротивление. Оно нужно для использования в зарядках для аккумуляторов, нагрузочных коммутаторах, электрических приводах, телекоммуникации, применения в различных видах приложений.

У нового семейства MOSFET спектр напряжений находится в пределах от -30 до 100 В, с разными значениями сопротивлений и емкостей. Это способствует широкому выбору при создании небольших, но качественных и доступных по стоимости вариантов.

Чем же транзисторы отличаются от предшественников? Это можно узнать при изучении технологии создания кристаллов для подобных корпусов.

Новые способы создания кристаллов помогли сделать транзистор более эффективным, по сравнению с конкурентами. Если сохраняются прежние размеры кристалла, выходят сниженные значения сопротивлений. В итоге достигаются наилучшие значения температуры для данного корпуса. IR производит транзисторы с корпусами SOT-23 и кристаллами, которые выпускаются по технологии Gen 10.7.

Характеристики современных транзисторов с корпусами SOT-23

Как мы уже указывали, главные преимущества новых устройств с корпусами SOT-23 — это наименьшие значения сопротивлений. Чтобы оценить новые приборы, учитываются лишь 2 показателя.

Канальное сопротивление транзистора сильно связано с напряжением в затворе и допустимой температурой

Это особенно важно для устройств с низким порогом напряжения

На картинке изображена зависимость сопротивления открытого транзистора от напряжения затвора.

Если сравнить транзистор IRLML6344 с AO3400A, то выяснится, что его рабочая температура меньше, за счет лучшего значения теплового сопротивления.

Обозначения разных величин в корпусе транзисторов SOT-23

В наименовании MOSFET присутствует несколько величин:

  • управляющее напряжение затвора;
  • тип корпуса;
  • технология кристаллизации;
  • уровень напряжения стока и размера кристалла.

Например, вот как обозначается новый транзистор: IRLML6244TRPBF, где:

  1. L — уровень управляющего напряжения.
  2. F — возможность управлять логическим уровнем напряжения.
  3. L — возможность управлять низким логическим уровнем сигнала.

Логическим уровнем называется состояние транзистора, когда он открыт при невысоком затворном напряжении 2,5 B.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: