Основные параметры
- Коэффициент передачи по току.
- Входное сопротивление.
- Выходная проводимость.
- Обратный ток коллектор-эмиттер.
- Время включения.
- Предельная частота коэффициента передачи тока базы.
- Обратный ток коллектора.
- Максимально допустимый ток.
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером.
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
- h11 = Um1/Im1, при Um2 = 0
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
- h12 = Um1/Um2, при Im1 = 0.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
- h21 = Im2/Im1, при Um2 = 0.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
- h22 = Im2/Um2, при Im1 = 0.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
- Um1 = h11Im1 + h12Um2;
- Im2 = h21Im1 + h22Um2.
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
Для схемы ОЭ: Im1 = Imб, Im2 = Imк, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:
- h21э = Imк/Imб = β.
Для схемы ОБ: Im1 = Imэ, Im2 = Imк, Um1 = Umэ-б, Um2 = Umк-б.
Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:
С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.
В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.
Архив блога
-
►
2020
(2)
►
февраля
(1)
►фев 09
(1)►
января
(1)
►янв 19
(1)
-
►
2019
(11)
►
июня
(1)
►июн 29
(1)►
апреля
(2)
►апр 30
(1)►
апр 26
(1)►
февраля
(5)
►фев 27
(1)►
фев 24
(1)►
фев 16
(1)►
фев 12
(1)►
фев 07
(1)►
января
(3)
►янв 27
(1)►
янв 25
(1)►
янв 15
(1)
-
►
2018
(35)
►
декабря
(1)
►дек 01
(1)►
ноября
(1)
►ноя 18
(1)►
октября
(4)
►окт 24
(1)►
окт 09
(1)►
окт 06
(1)►
окт 04
(1)►
сентября
(4)
►сен 18
(4)►
июля
(6)
►июл 31
(5)►
июл 03
(1)►
мая
(2)
►мая 24
(1)►
мая 17
(1)►
апреля
(5)
►апр 25
(1)►
апр 22
(1)►
апр 19
(1)►
апр 01
(2)►
марта
(5)
►мар 29
(1)►
мар 10
(1)►
мар 06
(1)►
мар 05
(2)►
февраля
(2)
►фев 25
(1)►
фев 12
(1)►
января
(5)
►янв 27
(1)►
янв 18
(1)►
янв 17
(2)►
янв 09
(1)
-
►
2017
(98)
►
декабря
(10)
►дек 24
(2)►
дек 06
(1)►
дек 03
(2)►
дек 02
(1)►
дек 01
(4)►
ноября
(35)
►ноя 29
(1)►
ноя 22
(1)►
ноя 19
(2)►
ноя 16
(20)►
ноя 14
(9)►
ноя 13
(2)►
октября
(9)
►окт 23
(1)►
окт 21
(1)►
окт 20
(1)►
окт 17
(3)►
окт 13
(2)►
окт 08
(1)►
сентября
(8)
►сен 22
(1)►
сен 18
(1)►
сен 13
(2)►
сен 12
(1)►
сен 09
(1)►
сен 04
(1)►
сен 02
(1)►
августа
(1)
►авг 13
(1)►
июля
(1)
►июл 09
(1)►
июня
(1)
►июн 22
(1)►
мая
(3)
►мая 23
(1)►
мая 22
(1)►
мая 16
(1)►
апреля
(3)
►апр 09
(2)►
апр 07
(1)►
марта
(11)
►мар 31
(1)►
мар 25
(1)►
мар 23
(1)►
мар 18
(1)►
мар 17
(2)►
мар 14
(1)►
мар 03
(1)►
мар 02
(2)►
мар 01
(1)►
февраля
(6)
►фев 28
(1)►
фев 26
(1)►
фев 24
(2)►
фев 20
(1)►
фев 02
(1)►
января
(10)
►янв 28
(3)►
янв 24
(2)►
янв 21
(1)►
янв 19
(1)►
янв 14
(1)►
янв 13
(2)
-
►
2016
(184)
►
декабря
(8)
►дек 24
(1)►
дек 23
(1)►
дек 22
(1)►
дек 20
(1)►
дек 15
(1)►
дек 14
(1)►
дек 13
(1)►
дек 11
(1)►
ноября
(24)
►ноя 30
(1)►
ноя 29
(3)►
ноя 28
(1)►
ноя 26
(3)►
ноя 25
(1)►
ноя 21
(2)►
ноя 19
(2)►
ноя 15
(1)►
ноя 14
(3)►
ноя 12
(2)►
ноя 10
(1)►
ноя 08
(1)►
ноя 06
(2)►
ноя 04
(1)►
октября
(7)
►окт 31
(1)►
окт 24
(1)►
окт 19
(2)►
окт 11
(2)►
окт 02
(1)►
сентября
(23)
►сен 24
(2)►
сен 23
(1)►
сен 22
(8)►
сен 20
(2)►
сен 16
(1)►
сен 15
(1)►
сен 12
(1)►
сен 10
(2)►
сен 03
(3)►
сен 01
(2)►
августа
(7)
►авг 06
(4)►
авг 03
(2)►
авг 01
(1)►
июля
(28)
►июл 31
(2)►
июл 30
(3)►
июл 28
(1)►
июл 24
(1)►
июл 22
(1)►
июл 21
(2)►
июл 20
(2)►
июл 18
(4)►
июл 15
(3)►
июл 10
(1)►
июл 07
(1)►
июл 06
(3)►
июл 05
(1)►
июл 04
(2)►
июл 01
(1)►
июня
(11)
►июн 27
(1)►
июн 26
(2)►
июн 19
(2)►
июн 16
(1)►
июн 13
(1)►
июн 06
(2)►
июн 05
(1)►
июн 03
(1)►
мая
(22)
►мая 31
(5)►
мая 27
(2)►
мая 26
(1)►
мая 24
(2)►
мая 22
(3)►
мая 21
(2)►
мая 16
(1)►
мая 15
(1)►
мая 14
(1)►
мая 09
(2)►
мая 04
(1)►
мая 01
(1)►
апреля
(9)
►апр 23
(2)►
апр 16
(1)►
апр 13
(1)►
апр 09
(1)►
апр 04
(1)►
апр 02
(3)►
марта
(25)
►мар 26
(1)►
мар 22
(1)►
мар 21
(3)►
мар 20
(5)►
мар 19
(3)►
мар 17
(1)►
мар 12
(1)►
мар 09
(1)►
мар 08
(1)►
мар 07
(2)►
мар 06
(3)►
мар 05
(3)►
февраля
(10)
►фев 28
(1)►
фев 24
(1)►
фев 22
(1)►
фев 20
(1)►
фев 10
(1)►
фев 06
(2)►
фев 02
(3)►
января
(10)
►янв 30
(1)►
янв 26
(1)►
янв 24
(1)►
янв 20
(1)►
янв 19
(4)►
янв 09
(1)►
янв 06
(1)
-
►
2015
(125)
►
декабря
(16)
►дек 30
(4)►
дек 24
(1)►
дек 21
(1)►
дек 20
(5)►
дек 13
(3)►
дек 05
(1)►
дек 04
(1)►
ноября
(35)
►ноя 27
(1)►
ноя 25
(1)►
ноя 22
(3)►
ноя 21
(7)►
ноя 19
(1)►
ноя 18
(1)►
ноя 17
(2)►
ноя 16
(3)►
ноя 15
(3)►
ноя 14
(6)►
ноя 11
(2)►
ноя 09
(3)►
ноя 06
(2)►
октября
(8)
►окт 31
(1)►
окт 23
(3)►
окт 22
(3)►
окт 08
(1)►
сентября
(5)
►сен 29
(1)►
сен 28
(1)►
сен 18
(1)►
сен 17
(1)►
сен 11
(1)►
августа
(10)
►авг 21
(1)►
авг 20
(5)►
авг 18
(1)►
авг 16
(1)►
авг 07
(2)►
июля
(4)
►июл 31
(1)►
июл 10
(1)►
июл 06
(1)►
июл 01
(1)►
июня
(9)
►июн 30
(1)►
июн 26
(1)►
июн 25
(1)►
июн 22
(1)►
июн 19
(1)►
июн 18
(1)►
июн 13
(1)►
июн 09
(1)►
июн 01
(1)►
мая
(11)
►мая 27
(1)►
мая 25
(1)►
мая 23
(2)►
мая 20
(1)►
мая 17
(1)►
мая 16
(2)►
мая 11
(1)►
мая 05
(1)►
мая 04
(1)►
апреля
(5)
►апр 29
(1)►
апр 19
(2)►
апр 16
(1)►
апр 06
(1)►
марта
(4)
►мар 26
(2)►
мар 23
(1)►
мар 10
(1)►
февраля
(6)
►фев 28
(1)►
фев 22
(1)►
фев 14
(1)►
фев 10
(2)►
фев 01
(1)►
января
(12)
►янв 17
(1)►
янв 13
(2)►
янв 12
(1)►
янв 09
(1)►
янв 06
(2)►
янв 05
(1)►
янв 04
(1)►
янв 03
(2)►
янв 01
(1)
-
▼
2014
(232)
►
декабря
(13)
►дек 31
(1)►
дек 27
(1)►
дек 26
(1)►
дек 23
(1)►
дек 22
(1)►
дек 20
(1)►
дек 19
(1)►
дек 14
(2)►
дек 13
(1)►
дек 06
(1)►
дек 01
(2)►
ноября
(5)
►ноя 30
(3)►
ноя 19
(1)►
ноя 03
(1)►
октября
(1)
►окт 16
(1)►
сентября
(1)
►сен 21
(1)►
августа
(5)
►авг 19
(1)►
авг 11
(1)►
авг 08
(3)►
июня
(15)
►июн 30
(1)►
июн 27
(1)►
июн 24
(3)►
июн 22
(2)►
июн 21
(3)►
июн 05
(2)►
июн 04
(1)►
июн 03
(2)►
мая
(2)
►мая 26
(1)►
мая 20
(1)►
апреля
(5)
►апр 17
(2)►
апр 13
(1)►
апр 12
(1)►
апр 02
(1)►
марта
(3)
►мар 10
(2)►
мар 03
(1)►
февраля
(10)
►фев 19
(1)►
фев 04
(8)►
фев 01
(1)-
▼
января
(172)
►
янв 26
(20)
▼
янв 25
(16)►
янв 20
(2)
►
янв 19
(30)
►
янв 18
(10)
►
янв 17
(41)
►
янв 10
(13)
►
янв 06
(40)
-
Как проверить мультиметром полевой транзистор
Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления. Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства.
Будет интересно Как сделать мигающий светодиод?
Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору. Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.
Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее. Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:
- Необходимо снять с транзистора статическое электричество.
- Переключить измерительный прибор в режим проверки полупроводников.
- Подключить красный щуп к разъему прибора «+», а черный «-».
- Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
- Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
- Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
- Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
- Изменив полярность проводов, показания напряжения должны остаться неизменными.
- Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.
Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время.
Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения. Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального.
Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную. Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра.
Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.
Полевые SMD транзисторы
Маркировка | Тип прибора | Маркировка | Тип прибора |
6A | MMBF4416 | C92 | SST4392 |
6B | MMBF5484 | C93 | SST4393 |
6C | MMBFU310 | H16 | SST4416 |
6D | MMBF5457 | I08 | SST108 |
6E | MMBF5460 | I09 | SST109 |
6F | MMBF4860 | I10 | SST110 |
6G | MMBF4393 | M4 | BSR56 |
6H | MMBF5486 | M5 | BSR57 |
6J | MMBF4391 | M6 | BSR58 |
6K | MMBF4932 | P01 | SST201 |
6L | MMBF5459 | P02 | SST202 |
6T | MMBFJ310 | P03 | SST203 |
6W | MMBFJ175 | P04 | SST204 |
6Y | MMBFJ177 | S14 | SST5114 |
B08 | SST6908 | S15 | SST5115 |
B09 | SST6909 | S16 | SST5116 |
B10 | SST6910 | S70 | SST270 |
C11 | SST111 | S71 | SST271 |
C12 | SST112 | S74 | SST174 |
C13 | SST113 | S75 | SST175 |
C41 | SST4091 | S76 | SST176 |
C42 | SST4092 | S77 | SST177 |
C43 | SST4093 | TV | MMBF112 |
C59 | SST4859 | Z08 | SST308 |
C60 | SST4860 | Z09 | SST309 |
C61 | SST4861 | Z10 | SST310 |
C91 | SST4391 |
А это пример n-p-n и p-n-n биполярных транзисторов (sot-23, sot-323) с типовым расположением выводов:
Главные характеристики irfz44n
Полный список параметров транзистора не приведен в даташит, поскольку он может потребоваться лишь специалистам по разработке. Большинству даже опытных пользователей нужно знать лишь часть характеристик для включения irfz44n устройства в различные электронные схемы.
При температуре не более 25 градусов транзистор имеет следующие ключевые параметры:
- Наибольшее напряжение стока-истока — 55 Вольт.
- Наибольший ток стока — 49 Ампер.
- Сопротивление проводного канала стока-истока — 5 микроОм.
- Рассеивающаяся мощность — 94 Ватт.
В ряде технических описаний наименование mosfet irfz44n транзистора с изоляцией затвора начинается с аббревиатуры МДП, что обозначает:
- Металл.
- Диэлектрик.
- Полупроводник.
У этих устройств может быть 2 вида каналов:
- встроенный;
- индуцированный.
Эти полупроводниковые приборы обладают затвором, разделенным с кремниевой подложкой тончайшей прослойкой диэлектрического материала. Его толщина около 0,1 мкм.
Безопасность при эксплуатации полевых транзисторов
Все варианты полевиков, не важно, имеют они p-n переходы, или это МОП-варианты, сильно подвержены влиянию перегрузок электричеством на затворах. Прежде всего, это относится к электростатике, которая накапливается в организме людей и устройствах для измерения разных величин. В ряде экземпляров полевиков есть встроенные для защиты частицы
Они называются стабилитронами. Их встраивают между затвором и истоком. Они должны защищать от электростатического заряда, но она не дает гарантии на 100%, и перестраховка необходима
В ряде экземпляров полевиков есть встроенные для защиты частицы. Они называются стабилитронами. Их встраивают между затвором и истоком. Они должны защищать от электростатического заряда, но она не дает гарантии на 100%, и перестраховка необходима.
Желательно провести заземление измерительной и паяльной аппаратуры. Сегодня это происходит в автоматическом режиме с помощью розеток европейского типа, так как они оснащены заземляющими проводниками.
Электрические параметры и предельные значения допустимых режимов работы транзистора ГТ308А.
Обозначение |
||
H21э |
Uкб=-1 В; Iэ=10 qокр=25 °С qокр=70 °С qокр= -60 °С |
20…75 20…200 ³ 15 |
H21э |
Uкб=-5 В; Iэ=5 f=20 МГц |
³ 4.5 |
Ikб0, МкА |
-60 °С £qокр £ 25 °С Uкб= -5 В; Uкб= -15 В; qокр=70 °С; Uкб= — 10 В; |
£ 2 £ 5 £ 90 |
Iэб0, МкА |
Uбэ= -2 В Uбэ= -3 В Uкб= -5 В; Iэ=5 f=20 МГц; |
£ 50 £1000 ³4.5 |
Кш,дБ |
Uкб= -5 В; Iэ=5 f=1.6 МГц; |
— |
Uкэ0.н, В |
Iк=50 мА; Iб= 3 мА |
— 1.5 |
Uбэ.н,В |
Iк=10 мА; Iб=1 |
— 0.5 |
Uкб0. Max,В |
qокр £ 45 °С |
-20 |
Ск,пФ |
Uкб= -5 В; f=5 МГц; |
£ 8 |
Сэ,пФ |
Uэб= -1 В; f=5 МГц; |
£ 25 |
tрас.мкc |
Iк=50 мА; Iб=4 tи= 5 мкс; f=1..10 МГц; |
£ 1 |
tк, пс |
Uкб= -5 В; Iэ=5 мА; f=5 |
400 |
*KURSOVOY PROEKT PO OKPRTU*
* SHPAK gr.940103*
R1 2 3 22K
R2 2 0 22K
R3 3 4 3K
R4 5 0 2K
R5 5 7 2K
R6 3 6 510
R7 8 10 1K
R8 9 0 270
R9 3 10 62K
R10 10 0 20K
R11 3 11 310
R12 12 0 170
R13 13 0 22K
.param k=1
.step param k list
0.8 2 5
C1 1 2 5.0UF
C2 6 0 10UF
C3 7 8 5.0UF
C4 8 9 {K*160PF}
C5 9 10 {K*160PF}
*C6 3 O 10UF
C7 11 13 10UF
Q1 4 2 5 KT315a
Q2 7 4 6 KT361a
Q3 11 10 12 KT315a
.model KT315a NPN
.model KT361a PNP
VS 3 0 DC 12V
VIN 1 0 AC 0.01
.AC DEC 50 1khz
500MEGHZ
.DC VS 0.5 20.5 5
.Tran 0.5us 4us
.Four 84KHZ v(13)
.PROBE
.PRINT AC V(13)
.END
BJT MODEL
PARAMETERS
KT315a KT361a
NPN PNP
IS
100.000000E-18 100.000000E-18
BF
100 100
NF 1
1
BR
1 1
NR
1 1
SMALL SIGNAL
BIAS SOLUTION TEMPERATURE = 27.000 DEG C
NODE
VOLTAGE NODE
VOLTAGE
(1)
0.0000
(2)
5.9318
(3) 12.0000
(4)
10.1990
(5)
5.1700
(6)
10.9910
(7)
9.0879
(8)
1.9415
(9)
0.0000
(10)
1.9415
(11) 9.9800
(12)
1.1188
(13 )
0.0000
HARMONIC
FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO
(HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1
8.400E+04 9.788E-10 1.000E+00 -1.522E+02 0.000E+00
2
1.680E+05 5.114E-10 5.225E-01 1.452E+02 2.974E+02
3
2.520E+05 3.349E-11 3.422E-02 7.207E+01 2.243E+02
4
3.360E+05 2.251E-10 2.300E-01 -1.576E+02 -5.391E+00
5 4.200E+05
2.044E-10 2.088E-01 1.381E+02 2.903E+02
6
5.040E+05 3.083E-11 3.150E-02 5.564E+01 2.079E+02
7
5.880E+05 1.164E-10 1.190E-01 -1.604E+02 -8.126E+00
8
6.720E+05 1.236E-10 1.263E-01 1.320E+02 2.842E+02
9
7.560E+05 2.746E-11 2.805E-02 4.143E+01 1.937E+02
HARMONIC
FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO
(HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1
8.400E+04 9.539E-10 1.000E+00 -1.545E+02 0.000E+00
2
1.680E+05 5.184E-10 5.435E-01 1.395E+02 2.939E+02
3
2.520E+05 7.710E-11 8.082E-02 4.980E+01 2.043E+02
4
3.360E+05 1.862E-10 1.952E-01 -1.568E+02 -2.275E+00
5
4.200E+05 1.839E-10 1.928E-01 1.294E+02 2.839E+02
6
5.040E+05 5.561E-11 5.830E-02 2.306E+01 1.775E+02
7
5.880E+05 9.593E-11 1.006E-01 -1.493E+02 5.203E+00
8 6.720E+05
1.003E-10 1.052E-01 1.266E+02 2.811E+02
9
7.560E+05 4.096E-11 4.295E-02 5.142E+00 1.596E+02
HARMONIC
FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO
(HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1
8.400E+04 8.378E-10 1.000E+00 -1.573E+02 0.000E+00
2
1.680E+05 4.557E-10 5.439E-01 1.307E+02 2.880E+02
3
2.520E+05 1.170E-10 1.396E-01 1.536E+01 1.727E+02
4
3.360E+05 1.705E-10 2.035E-01 -1.402E+02 1.710E+01
5
4.200E+05 1.384E-10 1.652E-01 1.326E+02 2.899E+02
6
5.040E+05 6.087E-11 7.265E-02 -1.418E+01 1.431E+02
7
5.880E+05 1.138E-10 1.359E-01 -1.355E+02 2.186E+01
8
6.720E+05 8.210E-11 9.799E-02 1.407E+02 2.981E+02
9 7.560E+05 3.747E-11
4.472E-02 -3.237E+01 1.249E+02
1. ОПИСАНИЕ СХЕМЫ:
Принципиальная схема проектируемого устройства
предстваляет собой трехкаскадный усилитель выполненный на кремниевых
высокочастотных транзисторах малой мощности. 2 каскада на транзисторах типа
КТ315А, а один на транзисторе типа КТ361А, которые включены по каскадной схеме.
Высокочастотные эффекты
Производительность транзисторного усилителя относительно постоянна вплоть до некоторой точки, как показано на графике зависимости коэффициента усиления по току от частоты для усилителя малых сигналов с общим эмиттером (рисунок ниже). За этой точкой по мере увеличения частоты производительность транзистора ухудшается.
Граничная частота (частота отсечки коэффициента бета), fгр, fT – это частота, при которой коэффициент усиления по току (hfe) усилителя малых сигналов с общим эмиттером падает ниже единицы (рисунок ниже). Реальный усилитель должен иметь коэффициент усиления > 1. Таким образом, на частоте fгр транзистор использоваться не может. Максимальная частота, приемлемая для использования транзистора, равна 0,1fгр.
Зависимость коэффициента усиления по току (hfe) от частоты для усилителя малых сигналов с общим эмиттером
Некоторые радиочастотные биполярные транзисторы могут использоваться в качестве усилителей на частотах до нескольких ГГц. Кремниево-германиевые устройства расширяют диапазон до 10 ГГц.
Предельная частота (частота отсечки коэффициента альфа), fпр, falpha – это частота, при которой коэффициент α снижается до 0,707 от коэффициента α на низких частотах, α=0,707α. Предельная частота и граничная частота примерно равны: fпр≅fгр. В качестве высокочастотного показателя предпочтительнее использовать граничную частоту fгр.
fmax – самая высокая частота колебаний, возможная при наиболее благоприятных условиях смещения и согласования импеданса. Это частота, при которой коэффициент усиления по мощности равен единице. Весь выходной сигнал подается назад на вход для поддержания колебаний. fmax является верхним пределом частоты работы транзистора в качестве активного устройства. Хотя реальный усилитель не используется на fmax.
Эффект Миллера: верхний предел частоты для транзистора, связанный с емкостями переходов. Например, PN2222A имеет входную емкость Cibo=25пФ и выходную емкость Cobo=9пФ между К-Б и К-Э соответственно. Хотя емкость К-Э 25 пФ кажется большой, она меньше, чем емкость К-Б (9 пФ). Из-за эффекта Миллера в усилителе с общим эмиттером емкость К-Б оказывает влияние на базу в β раз. Почему это так? Усилитель с общим эмиттером инвертирует сигнал, проходящий от базы к эмиттеру. Инвертированный сигнал коллектора, подаваемый назад на базу, противодействует входному сигналу. Сигнал на коллекторе в β раз больше входного сигнала. Для PN2222A β=50–300. Таким образом, емкость К-Б 9 пФ выглядит так: от 9 · 50 = 450 пФ до 9 · 300 = 2700 пФ.
Решение проблемы с емкостью перехода для широкополосных приложений заключается в выборе высокочастотного транзистора – RF (радиочастотного) или СВЧ транзистора. Полоса пропускания может быть дополнительно расширена за счет использования схемы с общей базой, вместо схемы с общим эмиттером. Заземленная база защищает входной эмиттер от емкостной обратной связи с коллектора. Каскодная схема из двух транзисторов будет обеспечивать такую же полосу пропускания, как и схема с общей базой, но уже с более высоким входным импедансом схемы с общим эмиттером.
Усилитель на КТ315
Для создания усилителя, представленного на схеме, нужен один КТ315, один конденсатор (1 мкФ), один резистор и mini Jack.
На схеме видно, что отрицательное питание и один из двух ходов mini Jack надо припаять к эмиттеру (левая ножка).
Ко второму ходу mini Jack присоединяем “плюсом” конденсатор, а его “минус” припаиваем к базе. Дальше мы переходим к резистору. Одна его сторона должна быть прикреплена к первому колоночному проводу (другой ход колоночного провода — к коллектору), а второй — к отрицательному ходу конденсатора. К соединению провода от колонки и резистора добавляется плюсовой провод.
Теперь можно вставлять разъем в колонку и наслаждаться улучшенным и громким звуком.
Наиболее важные параметры.
Коэффициент передачи тока – от 8.
Максимально допустимое напряжение коллектор-эмиттер – 300 В.
Максимальный ток коллектора – 1,5 А.
Напряжение насыщения коллектор-эмиттер при токе коллектора 1 А, базы 0,25 А – 1в.
Напряжение насыщения база-эмиттерпри токе коллектора 1 А, базы 0,25 А – – не выше 1,2в.
Рассеиваемая мощность коллектора – около 40 Вт(на радиаторе).
Граничная частота передачи тока – 4 МГц.
Обратный ток колектора при напряжении коллектор-база 15 в – не более 1 мА.
Обратный ток эмитера при напряжении эмиттер-база 9 в – не более 1 мА.
Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
13001 – кремниевый, эпитаксильно-планарный биполярный транзистор n-p-n проводимости. Используется в маломощных импульсных блоках питания бытовых приборов, зарядках, энергосберегающих, светодиодных лампах и других высоковольтных устройствах. Так же его можно встретить в схемах низкочастотных усилителей в качестве усилителя звукового сигнала.
Производители
По статистике, в мире насчитывается более миллиарда очень похожих по характеристикам транзисторов с цифрами «2222» в обозначении, особенно в корпусе ТО-92. Они встречаются в различных вариантах исполнения и модификаций. Постоянно появляются более новые образцы, которые совершенствуются и модернизируются производителями. При этом, спрос на такие устройства до сих пор остаётся стабильно высоким.
Многие современные транзисторы, у которых в маркировке присутствуют цифры «2222», являются более совершенствованными 2N2222. В настоящее время их выпуск налажен у следующих производителей полупроводниковых компонентов: NXP Semiconductors, Multicomp, Continental Device India Limited, Semtech Electronics, Inchange Semiconductor Company Limited, Micro Commercial Components (MCC), New Jersey Semi-Conductor Products, Siemens Semiconductor, ON Semiconductor, Foshan Blue Rocket Electronics, STMicroelectronics. Выгрузить datasheet в формате pdf возможно кликнув на это сообщение.
Транзисторы BC556, BC557, BC558, BC559, BC560 с буквами A, B, C.
Т ранзисторы BC556 – BC560 – кремниевые, высокочастотные усилительные общего назначения, структуры – p-n-p. Корпус пластиковый TO-92B. Маркировка буквенно – цифровая.
Наиболее важные параметры.
Постоянная рассеиваемая мощность(Рк т max ) – 500 мВт.
Предельная частота коэффициента передачи тока ( fh21э )транзистора для схем с общим эмиттером – 300 МГц;
Максимальное напряжение коллектор – эмиттер – У транзисторов BC556 65в. У транзисторов BC557, BC560 45в. У транзисторов BC558, BC549 30в.
Максимальное напряжение коллектор – база – У транзисторов BC556 80в. У транзисторов BC557, BC560 50в. У транзисторов BC558, BC559 30в.
Максимальное напряжение эмиттер – база – 5в.
Коэффициент передачи тока: У транзисторов BC556A, BC557A, BC558A, BC559A, BC560A – от 110 до 220. У транзисторов BC556B, BC557B, BC558B, BC559B, BC560B – от 200 до 450. У транзисторов BC556C, BC557C, BC558C, BC559C, BC560C – от 420 до 800.
Максимальный постоянный ток коллектора – 100 мА.
Напряжение насыщения коллектор-эмиттер при токе коллектора100мА, базы 5мА – не выше 0,6в.
Напряжение насыщения база-эмиттер при токе коллектора 100мА, базы 5мА – 0,9в.
Транзисторы комплиментарные BC556, BC557, BC558, BC559, BC560 – BC546, BC547, BC548, BC549, BC550.
BC556, BC557, BC558, BC559, BC560 встречаются в самых различных схемах. Эти транзисторы успешно используют, как для усиления сигналов звуковой частоты, так и в радиочастотных каскадах. Пример – популярная схема переговорного устройства(уоки – токи) на 27мГц.
Схема состоит из двух компонентов – LC генератора(емкостная трехточка) на частоту 27мГц и усилителя звуковой частоты с двухтактным выходным каскадом. Режимы прием – передача переключаются с помощью переключателя В1. В режиме передачи миниатюрный громкоговоритель переключается с выхода УЗЧ на вход и используется как динамический микрофон. Усиленный сигнал поступает на генератор 27мГц, производя модуляцию основной частоты.
В режиме приема схема работает как сверхрегнератор с очень большим усилением радиосигнала и прямым преобразованием его модуляции в сигнал звуковой частоты, после усиления в УЗЧ поступающий на громкоговоритель. В LC генераторе применен BC547(VT1), в усилителе звуковой частоты два BC547(VT2 – VT5) и два комплементарных BC557(VT3 – VT4). Все транзисторы лучше брать с буквой C(коэфф. усиления от 450). Резисторы можно взять любого типа с мощностью от 0,1 ватта, за исключением R3 – его мощность должна быть не менее 0,25 ватт.
Конденсаторы C1 – C11 слюдяные, C12 – C13 – оксидные(электролитические), любого типа. Катушка генератора L1 – 4 витка провода ПЭЛ -0,25 с отводом от одного витка, намотанная на каркасе диаметром 0,4 см, с подстроечным стержнем из феррита(от малогаб. импортного приемника). Катушка L2 – 1,5 витка на том же каркасе, тем же проводом. Антенной служит безкаркасная катушка – пружина диаметром 0,5 см содержащая 160 – 170 плотно намотанных витков провода ПЭВ 0,5 (виток, к витку). Длина такой антенны получается от 8 до 10см.
Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
12 шт. из магазина г.Ижевск2328 шт. со склада г.Москва,срок 3-4 рабочих дня
− +
В корзину
PNP транзистор общего применения
ХарактеристикиТехнические ∙ Корпус TO-92 ∙ Распиновка CBE
Электрические ∙ Мощность 0.5Вт ∙ Ток коллектора -0.1А ∙ Обратный ток коллектор-база -0.015uA ∙ Напряжение эмиттер-база -5В ∙ Напряжение коллектор-эмиттер 45В ∙ Напряжение коллектор-база -50В ∙ Hfe min 420 ∙ Hfe max 800
Общие ∙ Производитель Semtech