2sd600k pdf даташит

2sd600k pdf ( даташит ) - silicon power transistor

Транзисторные УНЧ

Транзисторные усилители мощности низкой частоты (УМЗЧ) для звуковой и аудио-аппаратуры. В разделе собраны принципиальные схемы самодельных усилителей мощности НЧ на биполярных и полевых транзисторах.

Здесь вы найдете схемы транзисторных усилителей разной сложности и с разным классом мощности:

  • низкой мощности — до 1,5 Ватт;
  • средней мощности — от 1,5 Ватт до 20 Ватт;
  • большой мощности — 25 Ватт, 50 Ватт, 100 Ватт, 200 Ватт, 300 Ватт и более.

Для самодельного аудио-комплекса или при ремонте музыкального центра можно изготовить многоканальный усилитель мощности в конфигурациях:

  • система 2.1 (сабвуфер + 2 сателлита);
  • система 5.1 (сабвуфер + 5 сателлитов);
  • стерео — два канала усиления;
  • квадро — четыре канала усиления.

На транзисторах можно без лишних сложностей собрать небольшой самодельный усилитель для наушников. Присутствуют очень простые и доступные по себестоимости конструкции усилителей, которые прекрасно подойдут для изготовления начинающими радиолюбителями.

Усилитель построен по простой схеме на трех транзисторах. На выходе, на нагрузке сопротивлением 4 От выдает мощность 2W при питании от источника напряжением 12V. Входное сопротивление усилителя мало, и составляет 470 Ом. Столь малое входное сопротивление позволяет ему хорошо согласовываться .

Схема самодельного гибридного усилителя звука на лампах и микросхемах с выходной мощностью 30 Ватт. Усилитель построен на лампе ECC88 (отечественный аналог — 6Н23П) и мощной микросхеме LM3875.

Принципиальная схема гитарного усилителя мощности низкой частоты с предусилителем и темброблоком. УМЗЧ собран на транзисторах TIP142 и TIP147, выходная мощность — 40Вт на 8 Ом, 60 Вт на 4 Ома.

Несколько принципиальных схем высококачественных УМЗЧ на полевых транзисторах, привлекающие своей простотой и техническими характеристиками. Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы.

Схема электрическая принципиальная усилителя приведена на рисунке (в скобках приведены замененные элементы). Данная конструкция является модернизациейразработки . Принципиальная схема УМЗЧ на MOSFET транзисторах (200Вт). Все основные части усилителя — трансформатор, радиаторы .

При разработке усилителей ЗЧ с максимальной выходной мощностью более 100 Вт первостепенноезначение приобретает необходимость получения возможно большего КПД усилителя при достаточно малых нелинейных искажениях. Вопрос о допустимом проценте нелинейных искажений усилителя ЗЧ не раз обсуждался на .

Свое знакомство с мощными усилителями я начал в 1958 году, когда учился в энергетическомтехникуме, и мне поручили обслуживать радиоузел. Он состоял из трех частей: малогабаритной радиотрансляционной установки “ТУ-100″, магнитофона “Днепр 9” и ЛАТРа на .

Уже давно разработчики УМЗЧ задают себе вопрос: до какого уровня необходимо снижать нелинейность усилителя? . Если проанализировать рекламные журналы по аудиотехнике, то гармонические искажения даже “топовых” моделей УМЗЧ в основном лежат в диапазоне 0,003. 0,05% .

Всем доброго времени суток! Вот с чем я осмелюсь с Вами поделиться. Тема для многих известна, и понятна. В чём она состоит. Дальше чисто моё ИМХО. Давно любителям звука внушают – если лампы, то в любом проявлении, а если транзисторы, то чтобы их было o-очень много! Иначе лапового звука не добьёшься. Например советские стандарты сначала классифицировали аудио-аппаратуру по кассам 4-й, 3-й, 2-й, 1-й!, и наконец.

Принципиальная схема простого трехтранзисторного усилителя мощности для применения в разнообразной малогабаритной аппаратуре. Зачастую, от «компьютерных колонок» требуется только воспроизведение каких-то звуковых сигналов, речевых сигналов, не требующих HI-FI или Hl-end качества .

Классификация выходных каскадов

Есть несколько методов сборки выходного каскада:

  • Из транзисторов, имеющих различную проводимость. Для этих целей чаще всего используют «комплементарные» (близкие по параметрам) транзисторы.
  • Из транзисторов, имеющих одинаковую проводимость.
  • Из транзисторов составного типа.
  • Из полевых транзисторов.

Работа усилителя, сконструированного, при помощи комплементарных транзисторов, отличается простотой: положительная сигнальная полуволна запускает работу одного транзистора, а отрицательная — другого. Необходимо, чтобы плечи (транзисторы) работали в одинаковых режимах и для реализации этого используется базовое смещение.

Если усилитель использует в работе одинаковые транзисторы, то никаких принципиальных отличий от первого варианта это не имеет. За исключением того факта, что для подобных транзисторов сигнал отличаться не должен.

При работе с остальными разновидностями усилителей необходимо помнить, что отрицательное напряжение для p-n-p транзисторов, и положительное — для n-p-n транзисторов.

Обычно звание усилителя мощности принадлежит именно оконечному каскаду, поскольку он работает с самыми большими величинами, хотя с технической точки зрения так можно называть и предварительные каскады. К числу основных показателей усилителя можно отнести: полезную, отдаваемую в нагрузку мощность, КПД, полосу усиливаемых частот, коэффициент нелинейных искажений. На эти показатели весьма сильно влияет выходная характеристика транзистора. При создании усилителя напряжения может быть использована однотактная и двутактная схемы. В первом случае режим работы усилителя линейный (класс А). Данная ситуация характеризуется тем, что протекание тока по транзистору длится до тех пор пока не окончится период входного сигнала.

Однотактный усилитель отличается высокими показателями по линейности. Однако эти качества могут искажаться при намагничивании сердечника. Для предотвращения подобной ситуации необходимо озаботиться наличием цепи трансформатора с высоким уровнем индуктивности для первичной цепи. Это отразится на размерах трансформатора. К тому же, ввиду принципа его работы, он обладает достаточно низким КПД.

В сравнении с ним данные по двутактному усилителю (класс B) куда выше. Данный режим позволяет искажать форму транзисторного тока на выходе. Это увеличивает результат отношения переменного и постоянного токов, снижая вместе с тем уровень потребляемой мощности, это и считается самым главным плюсом применения двутактных усилителей. Их работа обеспечивается подачей двух равных по значению, но фазно противоположных напряжений. Если отсутствует трансформатор со средней точкой, то можно воспользоваться фазоинверсным каскадом, который снимет противоположные по фазе напряжения с соответственных резисторов цепей коллектора и эмиттера.

Существует двухтактная схема, не включающая в себя выходной трансформатор. Для этого потребуются разнотипные транзисторы, работающие как эмиттерные повторители. Если оказывать воздействие двуполярным входным сигналом, то будет происходить поочерёдное открытие транзисторов, и расхождение токов по противоположным направлениям.

компенсационный стабилизатор напряжения

Принцип компенсационного стабилизатора на TL431 такой же как и на обычном стабилитроне: разность напряжений между входом и выходом компенсирует мощный биполярный транзистор. Но точность стабилизации получается выше, за счет того что обратная связь берется с выхода стабилизатора. Резистор R1 нужно рассчитывать на минимальный ток 5 мА, R2 и R3 рассчитываются, также как для параметрического стабилизатора.

Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад. Оба транзистора работают по схеме с эмиттерного повторителя, т.е. происходит усиление тока, а напряжение не усиливается.
На рисунке представлена реальная схема компенсационного стабилизатора на TL431, в ней появились новые компоненты: резистор R2 ограничивающий ток базы VT1 (например 330 Ом), резистор R3 – компенсирующий обратный ток коллектора VT2 (что особенно актуально при нагреве VT2) (например 4,7 кОм) и конденсатор C1 – повышающий устойчивость работы стабилизатора на высоких частотах (например 0,01 мкФ).

Модификации и группы транзистора D1047

Модель PC UCB UCE UBE IC TJ fT CC hFE ٭ Корпус
2SD1047 100 160 140 6 12 150 15 210 60 TO-247
2SD1047 (D, E) 100 160 140 6 12 150 15 210 20…200 TO-3PN
2SD1047 C 120 160 140 6 12 150 15 140 35…200 TO-3PB
2SD1047 P 120 160 140 6 12 150 15 210 20…200 TO-3PB
CSD1047 F (O, Y) 90 160 160 6 12 150 15 210 20…200 TO-3P
KSD1047 (O, Y) 80 160 140 6 8 150 15 210 20…200 TO-3P
KTD1047 (O, Y) 100 160 140 6 12 150 15 210 20…200 TO-3P(N)
KTD1047 B (O, Y) 100 160 140 6 12 150 15 210 20…200 TO-3P(N)-E
PMD1047 (D, E) 100 160 140 6 12 150 15 210 20…200 TO-3PI

٭ — производителями почти во всех модификациях выделяются группы (O, Y) или (D, E) по поддиапазонам величин hFE.

Обозначение транзистора в группе 2SD1047 O 2SD1047 Y 2SD1047 D 2SD1047 E
Диапазон величины hFE 60…120 100…200 60…120 100…200

Маркировка полевых SMD транзисторов

Маркировка Тип прибора Маркировка Тип прибора
       
6A MMBF4416 C92 SST4392
6B MMBF5484 C93 SST4393
6C MMBFU310 H16 SST4416
6D MMBF5457 I08 SST108
6E MMBF5460 I09 SST109
6F MMBF4860 I10 SST110
6G MMBF4393 M4 BSR56
6H MMBF5486 M5 BSR57
6J MMBF4391 M6 BSR58
6K MMBF4932 P01 SST201
6L MMBF5459 P02 SST202
6T MMBFJ310 P03 SST203
6W MMBFJ175 P04 SST204
6Y MMBFJ177 S14 SST5114
B08 SST6908  S15  SST5115
B09 SST6909  S16 SST5116
B10 SST6910  S70 SST270
C11 SST111  S71 SST271
C12 SST112  S74  SST174
C13 SST113  S75 SST175
C41 SST4091  S76 SST176
C42 SST4092  S77 SST177
C43 SST4093  TV MMBF112
C59 SST4859  Z08 SST308
C60 SST4860  Z09 SST309
C61 SST4861  Z10 SST310
C91 SST4391    

Маркировка биполярный SMD транзисторов

Обозначение на корпусе Тип транзистора Условный аналог
15 MMBT3960 2N3960
1A BC846A BC546A
1B BC846B BC546B
1C MMBTA20 MPSA20
1D BC846
1E BC847A BC547A
1F BC847B BC547B
1G BC847C BC547C
1H BC847
1J BC848A BC548A
1K BC848B BC548B
1L BC848C BC548C
1M BC848
1P FMMT2222A 2N2222A
1T MMBT3960A 2N3960A
1X MMBT930
1Y MMBT3903 2N3903
2A FMMT3906 2N3906
2B BC849B BC549B
2C BC849C BC549C / BC109C / MMBTA70
2E FMMTA93
2F BC850B BC550B
2G BC850C BC550C
2J MMBT3640 2N3640
2K MMBT8598
2M MMBT404
2N MMBT404A
2T MMBT4403 2N4403
2W MMBT8599
2X MMBT4401 2N4401
3A BC856A BC556A
3B BC856B BC556B
3D BC856
3E BC857A BC557A
3F BC857B BC557B
3G BC857C BC557C
3J BC858A BC558A
3K BC858B BC558B
3L BC858C BC558C
3S MMBT5551
4A BC859A BC559A
4B BC859B BC559B
4C BC859C BC559C
4E BC860A BC560A
4F BC860B BC560B
4G BC860C BC560C
4J FMMT38A
449 FMMT449
489 FMMT489
491 FMMT491
493 FMMT493
5A BC807-16 BC327-16
5B BC807-25 BC327-25
5C BC807-40 BC327-40
5E BC808-16 BC328-16
5F BC808-25 BC328-25
5G BC808-40 BC328-40
549 FMMT549
589 FMMT589
591 FMMT591
593 FMMT593
6A BC817-16 BC337-16
6B BC817-25 BC337-25
6C BC817-40 BC337-40
6E BC818-16 BC338-16
6F BC818-25 BC338-25
6G BC818-40 BC338-40
9 BC849BLT1
AA BCW60A BC636 / BCW60A
AB BCW60B
AC BCW60C BC548B
AD BCW60D
AE BCX52
AG BCX70G
AH BCX70H
AJ BCX70J
AK BCX70K
AL MMBTA55
AM BSS64 2N3638
AS1 BST50 BSR50
B2 BSV52 2N2369A
BA BCW61A BC635
BB BCW61B
BC BCW61C
BD BCW61D
BE BCX55
BG BCX71G
BH BCX71H BC639
BJ BCX71J
BK BCX71K
BN MMBT3638A 2N3638A
BR2 BSR31 2N4031
C1 BCW29
C2 BCW30 BC178B / BC558B
C5 MMBA811C5
C6 MMBA811C6
C7 BCF29
C8 BCF30
CE BSS79B
CEC BC869 BC369
CF BSS79C
CH BSS82B / BSS80B
CJ BSS80C
CM BSS82C
D1 BCW31 BC108A / BC548A
D2 BCW32 BC108A / BC548A
D3 BCW33 BC108C / BC548C
D6 MMBC1622D6
D7 BCF32
D8 BCF33 BC549C / BCY58 / MMBC1622D8
DA BCW67A
DB BCW67B
DC BCW67C
DE BFN18
DF BCW68F
DG BCW68G
DH BCW68H
E1 BFS17 BFY90 / BFW92
EA BCW65A
EB BCW65B
EC BCW65C
ED BCW65C
EF BCW66F
EG BCW66G
EH BCW66H
F1 MMBC1009F1
F3 MMBC1009F3
FA BFQ17 BFW16A
FD BCV26 MPSA64
FE BCV46 MPSA77
FF BCV27 MPSA14
FG BCV47 MPSA27
GF BFR92P
H1 BCW69
H2 BCW70 BC557B
H3 BCW89
H7 BCF70
K1 BCW71 BC547A
K2 BCW72 BC547B
K3 BCW81
K4 BCW71R
K7 BCV71
K8 BCV72
K9 BCF81
L1 BSS65
L2 BSS70
L3 MMBC1323L3
L4 MMBC1623L4
L5 MMBC1623L5
L6 MMBC1623L6
L7 MMBC1623L7
M3 MMBA812M3
M4 MMBA812M4
M5 MMBA812M5
M6 BSR58 / MMBA812M6 2N4858
M7 MMBA812M7
O2 BST82
P1 BFR92 BFR90
P2 BFR92A BFR90
P5 FMMT2369A 2N2369A
Q3 MMBC1321Q3
Q4 MMBC1321Q4
Q5 MMBC1321Q5
R1 BFR93 BFR91
R2 BFR93A BFR91
S1A SMBT3904
S1D SMBTA42
S2 MMBA813S2
S2A SMBT3906
S2D SMBTA92
S2F SMBT2907A
S3 MMBA813S3
S4 MMBA813S4
T1 BCX17 BC327
T2 BCX18
T7 BSR15 2N2907A
T8 BSR16 2N2907A
U1 BCX19 BC337
U2 BCX20
U7 BSR13 2N2222A
U8 BSR14 2N2222A
U9 BSR17
U92 BSR17A 2N3904
Z2V FMMTA64
ZD MMBT4125 2N4125

Технические характеристики

Рассмотрим характеристики KSA928A более подробно. В технических описаниях (datasheet) они представлены в таблицах c максимальными и электрическими параметрами. Все значения указаны для температуры окружающей среды (ТА) не более +25°С.

Максимальные параметры

Максимальные характеристики A928A (при ТА=+25°С):

  • напряжение между выводами: К-Б (VCBO) до -30 В; К-Э (VCEO) до -30 В; Э-Б (VEBO) = -5 В;
  • ток коллектора IC до -2 А;
  • мощность рассеиваемая на коллекторе РС до 1 Вт;
  • нагрев кристалла (Tj) до +150°С;
  • температура хранения (Tstg) -55 … 150°С.

При изучении транзисторов имеющих PNP-структуру следует обращать внимание на знак «-», который указывает на обратные значения тока и напряжения. Максимальные значения превышать недопустимо, так как устройство может выйти из строя, а его внутренняя структура будет повреждена. Иногда такое происходит даже после кратковременного всплеска напряжения выше заданных пределов

Для предотвращения таких случаев необходимо чтобы транзистор работал с небольшим запасом по всем параметрам, примерно 30-40% от предельно допустимых величин

Иногда такое происходит даже после кратковременного всплеска напряжения выше заданных пределов. Для предотвращения таких случаев необходимо чтобы транзистор работал с небольшим запасом по всем параметрам, примерно 30-40% от предельно допустимых величин

Максимальные значения превышать недопустимо, так как устройство может выйти из строя, а его внутренняя структура будет повреждена. Иногда такое происходит даже после кратковременного всплеска напряжения выше заданных пределов. Для предотвращения таких случаев необходимо чтобы транзистор работал с небольшим запасом по всем параметрам, примерно 30-40% от предельно допустимых величин.

Электрические параметры

Наиболее реальные возможности транзистора A928A отражены в таблицах электрических (номинальных) характеристик. Там же представлены условия (режимы измерений), при которых устройство может работать наиболее стабильно и продолжительно долго, без возникновения риска выхода его из строя. Все значения как и для предельных значений параметров указаны для ТА не более +25°С.

Группы усиления по HFE

Электронная промышленность подразделяет KSA928A на две группы. Такая классификация осуществляется на завершающих этапах производства, в том числе в ходе тестирования и отбраковки дефектных изделий. Решающее значение при этом имеет коэффициент усиления по току (HFE). У рассматриваемого транзистора HFE находится в диапазоне: от 100 до 200 (O), от 160 до 320 (Y).

Комплементарная пара

В связи с тем, что A928A используется преимущественно для работы в усилителях звуковой частоты, для него была разработана комплементарная пара KSC2328A. Последний имеет кремниевую NPN-структуру. В настоящее время существует множество аудиоусилителей сконструированных на базе двух этих транзисторов работающих парой в выходном дифференциальном каскаде.

Модификации и группы транзистора D1047

Модель PC UCB UCE UBE IC TJ fT CC hFE ٭ Корпус
2SD1047 100 160 140 6 12 150 15 210 60 TO-247
2SD1047 (D, E) 100 160 140 6 12 150 15 210 20…200 TO-3PN
2SD1047 C 120 160 140 6 12 150 15 140 35…200 TO-3PB
2SD1047 P 120 160 140 6 12 150 15 210 20…200 TO-3PB
CSD1047 F (O, Y) 90 160 160 6 12 150 15 210 20…200 TO-3P
KSD1047 (O, Y) 80 160 140 6 8 150 15 210 20…200 TO-3P
KTD1047 (O, Y) 100 160 140 6 12 150 15 210 20…200 TO-3P(N)
KTD1047 B (O, Y) 100 160 140 6 12 150 15 210 20…200 TO-3P(N)-E
PMD1047 (D, E) 100 160 140 6 12 150 15 210 20…200 TO-3PI

٭ — производителями почти во всех модификациях выделяются группы (O, Y) или (D, E) по поддиапазонам величин hFE.

Обозначение транзистора в группе 2SD1047 O 2SD1047 Y 2SD1047 D 2SD1047 E
Диапазон величины hFE 60…120 100…200 60…120 100…200

Проверка работоспособности

Вопрос о том, как проверить строчный транзистор d2499 мультиметром и определить его исправность встречается очень часто. На практике его тестируют стандартным способом, как обычный биполяник, но при этом есть свои нюансы. Рассмотрим их подробнее, они характерны для большинства подобных устройств.

Так как структура нашего строчника NPN, то для начала необходимо установить мультиметр в режим «прозвонки диодов». Отрицательный щуп (черный) ставим на вывод К, а положительным (красным) соединяем с контактом Б. На тестере, при этом, должно появится небольшое падение напряжения. При смене полярности будет отображаться цифра «1», КЗ быть не должно.

Далее надо проверить переход Б-Э. Ставим красный щуп на контакт Э, черный остаётся на Б. Так как между выводами Б и Э стоит резистор, то мультиметр будет пищать, сигнализируя прохождение тока. Необходимо проверить сопротивление на этом участке, оно должно быть в пределах от 40 до 50 Ом.

Между выводов К-Э установлен демпферный диод и это надо учитывать. В режиме «прозвонки диодов» на тестере отображается падение напряжения. Сопротивление между этими контактами транзистора замеряется на пределе до 200 MОм. У оригинального 2SD2499 оно составляет более 150 MОм. И чем выше это значение, тем лучше.

Пример проверки похожих строчных транзисторов можно посмотреть в видеоролике.

https://youtube.com/watch?v=tOqGtf7yT5U

Аналоги

Для замены могут подойти транзисторы кремниевые со структурой NPN, мезапланарные, предназначенные для использования в импульсных источниках питания, пускорегулирующих устройствах, схемах управления электродвигателями и др., аппаратуре общего применения.

Отечественное производство

Тип PC UCB UCE UBE IC/ICP TJ UCE (sat) UBE (sat) fT Cob hFE Временные параметры: ton / tstg / tf мкс Корпус
2SD2499 50 1500 600 5 6 150 ˂ 5 ˂ 1,3 2 95 5…25 — / 11,0 / 0,6 TO-3PHIS
КТ839А 50 1500 5 10 150 ˂ 1,5 5 240 ˃ 5 TO-3
КТ872А 100 1500 700 6 8 150 ˂ 1,0 6 — / 7,5 / 1,0 TO-218
КТ872А1 34 1200 700 6 8 150 ˂ 1,5 6 — / 7,5 / 1,0 TO-218
КТ8107А 100 1500 700 6 10 125 ˂ 3,0 2,3 — / 3,5 / 0,5 TO-3
КТ710А 50 3000 5 5 ˂ 3,5 ˃ 1,5 ˃ 3,5 TO-3
2Т856А 125 950 950 5 10 ˂ 1,5 10…60 — / — / 0,5 TO-3
КТ8118 50 900 800 3 ˃ 15 10…40 TO-220

Зарубежное производство

Тип PC UCB UCE UBE IC/ICP TJ UCE (sat) UBE (sat) fT Cob hFE Временные параметры: ton / tstg / tf мкс Корпус
2SD2499 50 1500 600 5 6 150 ˂ 5 ˂ 1,3 2 95 5…25 — / 11,0 / 0,6 TO-3PHIS
2SD2498 50 1500 600 5 6 150 ˂ 5 ˂ 1,2 2 95 5…30 — / 10 / 0,7 TO-3PHIS
2SD2500 50 1500 600 5 10 150 ˂ 3 ˂ 1,4 1,7 135 10 — / 11 / 0,7 TO-3PHIS
2SD5702 60 1500 800 6 6 150 ˂ 5 ˂ 1,5 3 10 — / — / 0,4 TO-3PHIS
2SC5048 50 1500 600 5 12 150 ˂ 3 ˂ 1,4 1,7 160 10 — / 4 / 0,3 TO-3PHIS
2SC5129 50 1500 600 5 10 150 ˂ 3 ˂ 1,4 1,7 135 10 — / 4 / 0,3 TO-3PHIS
2SC5150 50 1700 700 5 10 150 ˂ 3 ˂ 1,2 2 185 10 — / 4 / 0,3 TO-3PHIS
2SC5280 50 1500 600 5 8 150 ˂ 5 ˂ 1,5 2 115 10 — / 5 / 0,5 TO-3PHIS
2SC5339 50 1500 600 5 7 150 ˂ 5 ˂ 1,3 2,4 82 10 — / 8 / 0,5 TO-3PHIS
2SC5386 50 150 600 5 8 150 ˂ 3 ˂ 1,5 1,7 105 15 — / 3,5 / 0,3 TO-3PHIS
2SC5404 50 1500 600 5 9 150 ˂ 3 ˂ 1,5 2,5 115 10 — / 3,5 / 0,3 TO-3PHIS
2SC5802 60 1500 800 6 10 150 ˂ 3 ˂ 1,5 15 — / — / 0,3 TO-3PHIS
BU4508DZ 32 1500 800 8 150 ˂ 3 ˂ 1,03 7 — / 3,75 / 0,4 SOT186A
BU508DXI 45 1500 700 8 150 ˂ 1 ˂ 1,3 7 125 ˂ 30 — / 6,5 / 0,7 ISO218
BUH515DX1 50 1500 700 5 8 150 ˂ 1,5 ˂ 1,3 3…10 — / 3,6 / 0,26 ISO218
BUH515FP 38 1500 700 10 8 150 ˂ 1,5 ˂ 1,3 4…12 — / 3,9 / 0,28 TO-220FP

Примечание: данные в таблицах взяты из даташип компаний-производителей.

ТУТ ВИДЕО

   Совсем не дурно, почти hi-end! На самом деле если ориентироваться только по КНИ, то этот усилитель полноценный HI-END, но для хай-энда этого не достаточно, поэтому его отнесли к старому и доброму разряду hi-fi.

   Несмотря на то, что усилитель развивает всего 100 ватт, он на порядок сложнее аналогичных схем, но сама сборка не составит труда при наличии всех компонентов. Отклонять номиналы схемы не советую – мой опыт это подтверждает. 

   Маломощные транзисторы в ходе работы могут перегреваться, но волноваться не стоит – это их нормальный режим работы. Выходной каскад, как уже сказал, работает в классе АВ, следовательно, выделятся огромное количество тепла, которое нужно отводить. В моем случае они укреплены на общий теплоотвод, которого более, чем достаточно, но на всякий случай, имеется также и активное охлаждение. 

   После сборки нас ждет первый запуск схемы. Для этого советую еще раз прочитать запуск и настройку Ланзара – тут все делается точно таким же образом. Первый запуск делаем с закороченной на землю входом, если все ОК, то размыкаем вход и подаем звуковой сигнал. К тому времени все силовые компоненты должны быть укреплены на теплоотвод, а то восхищаясь музыкой можете не заметить, как дымят ключи выходного каскада – каждый из них стоит очень и очень. А про блок защиты в узнаете в следующем материале. С уважением – АКА КАСЬЯН.

Аналоги КТ315

У транзистора имеется как отечественная замена, так и заграничная. Начнем с первой. Это КТ3102 (ТО-92). Он тоже кремниевый, с npn структурой, но с большей температурой (до +150 С), другим расположением диодов и более высокими электрическими возможностями. Можно сказать, что они, относительно, одинаковы.

Иностранные заменители: ВС547 (npn, высокочастотный (примерно в 300 МГц, когда у КТ315 — 250 МГц), расположение диодов как у КТ3102, температура до +150 С), PN2222 (300 МГц, цоколевка соответствует предыдущей, остальные характеристики примерно одинаковы с КТ315), 2SC9014 (температура от -55 С до +150 С, 270 МГц). Раньше зарубежные транзисторы выходили с корпусом КТ-13, но на данный момент таких уже не существует.

Проверка работоспособности КТ315

Иногда КТ315 может быть нерабочим из-за пробитого или закороченного перехода, поэтому перед использованием стоит проверить его np-переходы мультиметром. Отрицательный щуп прикрепляется к базе, а положительный — на выбор (коллектор или эмиттер). Если диоды исправны, то их значения должны быть не близки нулю, а также отсутствие пищания мультиметра.

Проверка работоспособности КТ361

Поскольку эти транзисторы часто применяются вместе, то исправность КТ361 тоже нужно узнать

Очень важно запомнить, что КТ361 противоположен 315, из-за чего работа должна совершаться наоборот. Здесь отрицательный щуп прикрепляется к коллектору (или эмиттеру), а положительный — к базе

Показатели должны быть не близки к нулю, мультиметр не должен сигнализировать (как и в предыдущем разделе).

Справка об аналогах биполярного низкочастотного npn транзистора TIP122.

Эта страница содержит информацию об аналогах биполярного низкочастотного npn транзистора TIP122 .

Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора.

Можно попробовать заменить транзистор TIP122 транзистором 2SD633; транзистором 2SD970; транзистором ECG261; транзистором TIP121;

транзистором TIP120; транзистором RCA122; транзистором TIP622; транзистором TIP121; транзистором 2SC1883; транзистором 2SD1196; транзистором 2SD686; транзистором 2SD970; транзистором 2SD460; транзистором 2SD1414;

Замена импортных транзисторов отечественными

Аналоги и возможные замены
Тип Аналог Возможная замена Примечания
MJEF34   КТ816 Любой мощный рпр-транзистор с максимальным током коллектора большим 3 А
TIP42   КТ816  
2SK58   КПС315А, Б  
2N5911   Обычные ПТ  
U441   КП303Д, Е; КП307Г, Д;КПЗ12; КП323;КП329; КП341;КП364Д, Е  
U444   КП303Д, Е; КП307Г, Д;КП312; КП323,КП329; КП341;КП364Д, Е  
MPF102   КП303Д, Е В этой схеме можно применить любой высокочастотный полевой транзистор с каналом ri-типа и изоляцией рп-переходом. При наладке схемы может понадобиться подобрать резисторы в цепях затворов и/или истоков. Предпочтение следует отдавать транзисторам с наибольшим и начальными токами стока, малым пороговым напряжением и уровнем шума на ВЧ
MPS3866   КТ368 В этой схеме можно применить любой высокочастотный биполярный прп-транзистор. Предпочтение следует отдавать транзисторам с малым уровнем шума на ВЧ
25139 КП327А,В КП346А-9; КП382А  
1N754   КС162  
1N757A   КС182  
2N3563   КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е  
2N3565   КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е  
2N3569   КТ6113; КТ375;КТ345; КТ315;КТ3142; КТ3102Г,Е  
BFR90 КТ3198А КТ371А, КТ3190А  
MPS3866 КТ939А    
MRF557   КТ948; КТ996Б-2;КТ9141; КТ9143;КТ919; КТ938  
MRF837   КТ634; КТ640; КТ657Б-2  
MV2101   KB102; KB107А,В  
2N4401 КТ6103 КТ504  
2N4403 КТ6102, КТ6116 КТ505  
ВС547В КТ3102    
ВС549С КТ3102    
ВС557В KТ3107    
BD139 КТ815    
BD140 КТ814    
2N5771 КТ363АМ    
ВС548 КТ3102    
ВС557 КТ3107    
TIP111 КТ716    
TIP116 КТ852    
TIP33B КТ865    
TIP34B КТ864    
2SC2092   КТ981, КТ955А,КТ9166А, КТ9120  
MRF475   КТ981, КТ955А,КТ9166А, КТ9120  
40673   КП350, КП306,КП327, КП347,КП382  
2N4124 КТ3102Д    
J309   КП303Д, Е; КП307Г, Д;КПЗ12, КП323;КП329; КП341;КП364Д, Е  
MPS2907 КТ313    
2N3414   КТ645  
2N4403 КТ6102, КТ6116 КТ505  
3055Т КТ8150А    
ВС517   КТ972  
IRF9Z30   КП944  
TIP125 КТ853, КТ8115    
BS250P   КП944  
2N3391A   КТ3102 Любые маломощные с большим h2fe
BC184L   КТ3102 Любые маломощные с большим h2fe
ВС547В   КТ3102  
BUZ11   КП150  
IRFL9110   КП944  
2N4401 КТ6103, КТ6117  КТ504  
2N4403 КТ6102, КТ6116 КТ505  
ВС109С   КТ342  
ВС237   КТ3102  
ВС547   КТЗ102, КТ645А  
 2N4401 КТ6103, КТ6117 КТ504  
2N4403 КТ6102, КТ6116 КТ505  
MPS А18   КТ342Б, Д  
2N3704   КТ685  
2N4393   КП302ГМ  
2N5401   КТ6116А  
ВС487   КТ342Б, Д; КТ630Е  
IRFZ44 КП723А    
MPS2907 КТ313 КТ3107  
MPSА14   КТ685  
MPSA64   КТ973  
2N2222 КТ3117Б КТ315  
2N3904 КТ6137А КТ815  
2N3906 КТ6136А    
ECG-187 ГТ906А    
FPT-100     фототранзистор
HRF-511 КП904    
TIL 414     фототранзистор

Нужно заменить диод или стабилитрон? — аналоги и замены диодов и полупроводников.

Цоколёвка и маркировка КТ815

Цоколёвка транзистора КТ815 зависит от типа корпуса прибора. Существует два различных типа корпуса – КТ-27 и КТ-89. Первый случай используется для объёмного монтажа элементов, второй – для поверхностного. По зарубежной классификации, типы данных корпусов имеют, соответственно, следующие обозначения: TO -126 для первого случая и DPAK для второго случая.

Расположение выводов элемента прибора в корпусе КТ-27 имеет следующий порядок: эмиттер-коллектор-база, если смотреть на транзистор с его лицевой стороны. Для элемента в корпусе КТ-89, расположение выводов имеет следующий порядок: база-коллектор-эмиттер, где коллектором является верхний электрод прибора.

На сегодняшний день, применение элементов в корпусе КТ-27 ограничено, в основном, радиолюбительскими схемами и конструкциям. Элементы в корпусах КТ-89 применяются в изготовлении бытовой техники и по сей день.

Для маркировки данного прибора изначально использовали полное его название, например, КТ815А и дополняли маркировку месяцем и годом выпуска транзистора. В дальнейшем обозначения значительно сократили, оставив на корпусе элемента только одну букву, обозначающую тип элемента и цифру, например -5А для прибора КТ815А.

Соответствие: отечественный транзистор ⇒ импортный аналог

Транзистор Аналог
КТ209 MPS404
КТ368А9 BF599
КТ3102АМ КТ3102БМ КТ3102ВМ КТ3102ДМ BC547A BC547B BC548B BC549C
КТ3107БМ КТ3107ГМ КТ3107ДМ КТ3107ЖМ КТ3107ИМ КТ3107КМ КТ3107ЛМ BC308A BC308A BC308B BC309B BC307B BC308C BC309C
КТ3117А КТ3117Б 2N2221 2N2222A
КТ3126А BF506
КТ3127А 2N4411
КТ3129Б9 КТ3129В9 КТ3129Г9 BC857A BC858A BC858B
КТ3130А9 КТ3130Б9 КТ3130В9 BCW71 BCW72 BCW31
КТ3142А 2N2369
КТ3189А9 КТ3189Б9 КТ3189В9 BC847A BC847B BC847C
КТ635Б 2N3725
КТ639А КТ639Б КТ639В КТ639Г КТ639Д КТ639Е КТ639Ж BD136-6 BD136-10 BD136-16 BD138-6 BD138-10 BD140-6 BD140-10
КТ644А КТ644Б КТ644В КТ644Г PN2905A PN2906 PN2907 PN2907A
КТ645А КТ645Б 2N4400 2N4400
КТ646А КТ646Б 2SC495 2SC496
КТ660А КТ660Б BC337 BC338
Транзистор Аналог
КТ668А КТ668Б КТ668В BC556 BC557 BC558
КТ940А BF458
КТ940Б КТ940В BF457 BF459
КТ961А КТ961Б КТ961В BD139 BD137 BD135
КТ969А BF469
КТ972А КТ972Б BD877 BD875
КТ684А КТ684Б КТ684В BC636 BC638 BC640
КТ685А КТ685Б КТ685В КТ685Г PN2906 PN2906A PN2907 PN2907A
КТ686А КТ686Б КТ686В КТ686Г КТ686Д КТ686Е BC327-16 BC327-25 BC327-40 BC328-16 BC328-25 BC328-40
КТ6109А КТ6109Б КТ6109В КТ6109Г КТ6109Д SS9012D SS9012E SS9012F SS9012G SS9012H
КТ6110А КТ6110Б КТ6110В КТ6110Г КТ6110Д SS9013D SS9013E SS9013F SS9013G SS9013H
КТ6111А КТ6111Б КТ6111В КТ6111Г SS9014A SS9014B SS9014C SS9014D
КТ6112А КТ6112Б КТ6112В SS9015A SS9015B SS9015C
КТ6113А КТ6113Б КТ6113В КТ6113Г КТ6113Д КТ6113Е SS9018D SS9018E SS9018F SS9018G SS9018H SS9018I
Транзистор Аналог
КТ6114А КТ6114Б КТ6114В SS8050B SS8050C SS8050D
КТ6115А КТ6115Б КТ6115В SS8550B SS8550C SS8550D
КТ6116А КТ6116Б 2N5401 2N5400
КТ6117А КТ6117Б 2N5551 2N5550
КТ6128А КТ6128Б SS9016D SS9016E
КТ973А КТ973Б BD878 BD876
KT9116A KT9116Б TPV-394 TPV-375
KT9133A TPV-376
KT9142A 2SC3218
KT9150 TPV-595
KT9151A 2SC3812
KT9152A 2SC3660
КТ6136А 2N3906
КТ728А КТ729А MJ3055 2N3055
КТ808АМ КТ808БМ 2SC1619A 2SC1618
КТ814Б КТ814В КТ814Г BD136 BD138 BD140
КТ815Б КТ815В КТ815Г BD135 BD137 BD139
КТ817Б КТ817В КТ817Г BD233 BD235 BD237
КТ818Б TIP42
КТ819Б TIP41
КТ840А КТ840Б BU326A BU126
Транзистор Аналог
КТ856А КТ856Б BUX48A BUX48
КТ867А BUY21
КТ872А КТ872Б КТ872Г BU508A BU508 BU508D
КТ878А КТ878Б КТ878В BUX98 2N6546 BUX98A
КТ879А КТ879Б 2N6279 2N6278
КТ892А КТ892Б КТ892В TIP661 BU932Z TIP662
КТ899А 2N6388
КТ8107А BU508A
КТ8109А TIP151
КТ8110А 2SC4242
КТ8121А MJE13005
КТ8126А КТ8126Б MJE13007 MJE13006
КТ8164А КТ8164Б MJE13005 MJE13004
КТ8170А1 КТ8170Б1 MJE13003 MJE13002
КТ8176А КТ8176Б КТ8176В TIP31A TIP31B TIP31C
КТ8177А КТ8177Б КТ8177В TIP32A TIP32B TIP32C
КТ6128В КТ6128Г КТ6128Д КТ6128Е SS9016F SS9016G SS9016H SS9016I
КТ6137А 2N3904
КТ928А 2N2218
КТ928Б КТ928В 2N2219 2N2219A

.

Маркировка и цоколёвка

Данный прибор имеет структуру n — p — n . Выводы элемента слева-направо, при обращении лицевой части транзистора к нам(плоская сторона с маркировкой), имеют такой порядок – “коллектор-база-эмиттер”. Цоколёвку КТ3102 нужно знать и учитывать её при пайке прибора. Ошибка при пайке может повредить весь транзистор.

Маркировка транзисторов применяется для различия одного типа прибора от другого. Например, различия между типом А и Б. В случае КТ3102, маркировка имеет следующую структуру:

  • Зелёный кружок на лицевой стороне означает тип транзистора. В нашем случае – КТ3102.
  • Кружок сверху означает букву прибора (А, Б, В и т.д). Применяются следующие обозначения :

А – красный или бордовый. Б – жёлтый. В – зелёный. Г – голубой. Д – синий. Е – белый. Ж – тёмно-коричневый.

На некоторых приборах вместо цветовых обозначений, маркировка пишется словами. Например, 3102 EM. Подобные обозначения удобнее цветных.

Знание маркировки транзистора позволит правильно подобрать нужный элемент, согласно требуемым параметрам.

Графические иллюстрации характеристик

Рис. 2. Внешние характеристики транзистора. Зависимость тока коллектора IC от напряжения коллектор-эмиттер UCE при различных значениях тока базы IB.

Характеристики сняты в схеме с общим эмиттером (на поле рисунка: “COMMON EMITTER”).

Температура корпуса Tc = 25°C.

Рис. 3. Зависимость статического коэффициента усиления hFE от величины коллекторной нагрузки IC при различных температурах корпуса Tc и значении напряжения коллектор-эмиттер UCE = 5 В.

Характеристики сняты в схеме с общим эмиттером (на поле рисунка: “COMMON EMITTER”).

Рис. 4. Зависимость напряжения коллектор-эмиттер UCE от величины тока управления (базы) IB при нескольких значениях коллекторного тока IC.

Характеристики сняты в схеме с общим эмиттером (на поле рисунка: “COMMON EMITTER”).

Температура корпуса Tc = 25°C.

Рис. 5. Зависимость напряжения коллектор-эмиттер UCE от величины тока управления (базы) IB при нескольких значениях коллекторного тока IC.

Характеристики сняты в схеме с общим эмиттером (на поле рисунка: “COMMON EMITTER”). Температура корпуса Tc = 100°C.

Рис. 6. Передаточная характеристика транзистора. Зависимость тока нагрузки IC от величины входного напряжения UBE.

Характеристики сняты в схеме с общим эмиттером при трех различных температурах корпуса Tc и при напряжении на коллекторе UCE = 5 В.

Рис. 7. Кривая ограничения рассеиваемой мощности транзистора PC при увеличении температуры корпуса Tc.

Теплоемкость охладителя предполагается бесконечно большой (пояснение на поле рисунка — INFINITE YEAT SINK).

Рис. 8. Зависимость изменения переходного теплового сопротивления rth(jc) (коллектор-корпус) от длительности tw одиночного неповторяющегося импульса тока.

Температура корпуса транзистора Tc = 25°C, то есть транзистор снабжен охладителем с бесконечно большой теплоемкостью.

Зависимость должна учитываться при всех тепловых ограничениях.

Рис. 9. Область безопасной работы транзистора.

Ограничения нагрузок:

  • IC max (PULSED)٭ — импульсные токи коллектора, одиночные неповторяющиеся импульсы различной длительности (10 мкс, 100 мкс, 1 мс, 10 мс, 100 мс). Длительности также помечены символом «٭».
  • IC max (CONTINUOUS) – постоянный ток нагрузки при Tc = 25°C (пояснение на поле рисунка DC OPERATION).
  • UCEO max – предельное напряжение коллектор-эмиттер.

Ординаты всех кривых должны линейно уменьшаться с увеличением температуры.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: