C2344 Datasheet PDF — Sanyo Semiconductor Corporation
Part Number | C2344 | |
Description | NPN Transistor — 2SC2344 | |
Manufacturers | Sanyo Semiconductor Corporation | |
Logo | ||
There is a preview and C2344 download ( pdf file ) link at the bottom of this page. Total 4 Pages |
Preview 1 page
No Preview Available !
Ordering number:ENN544G 0.8 0.4 ( ) : 2SA1011 Absolute Maximum Ratings at Ta = 25˚C 123 Electrical Characteristics at Ta = 25˚C Parameter * : The 2SA1011/2SC2344 are classified by 300mA hFE as follows : Rank |
On this page, you can learn information such as the schematic, equivalent, pinout, replacement, circuit, and manual for C2344 electronic component. |
Information | Total 4 Pages |
Link URL | |
Product Image and Detail view | 1. — NPN, Equivalent (Datasheet PDF) |
Download |
Share Link :
Electronic Components Distributor
An electronic components distributor is a company that sources, stocks, and sells electronic components to manufacturers, engineers, and hobbyists. |
SparkFun Electronics | Allied Electronics | DigiKey Electronics | Arrow Electronics |
Mouser Electronics | Adafruit | Newark | Chip One Stop |
Транзистор кт502, характеристики, маркировка, аналоги, цоколевка
Транзисторы КТ502 универсальные кремниевые эпитаксиально-планарные структуры p-n-p.
Применяются в усилителях низкой частоты, операционных и дифференциальных усилителях, импульсных устройствах, преобразователях.
№1 — Эмиттер
№2 — База
№3 — Коллектор
Маркировка КТ502
КТ503А — сбоку светложелтая точка, сверху темнокрасная точка
КТ503Б — сбоку светложелтая точка, сверху желтая точка
КТ503В — сбоку светложелтая точка, сверху темнозеленая точка
КТ503Г — сбоку светложелтая точка, сверху голубая точка
КТ503Д — сбоку светложелтая точка, сверху синяя точка
КТ503Е — сбоку светложелтая точка, сверху белая точка
Предельные параметры КТ502
Максимально допустимый постоянный ток коллектоpа (IК max):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 150 мА
Максимально допустимый импульсный ток коллектоpа (IК, и max):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 350 мА
Граничное напряжение биполярного транзистора (UКЭ0 гр) при ТП = 25° C:
- КТ502А — 25 В
- КТ502Б — 25 В
- КТ502В — 40 В
- КТ502Г — 40 В
- КТ502Д — 60 В
- КТ502Е — 80 В
Максимально допустимое постоянное напряжение коллектор-база при токе эмиттера, равном нулю (UКБ0 max) при ТП = 25° C:
- КТ502А — 40 В
- КТ502Б — 40 В
- КТ502В — 60 В
- КТ502Г — 60 В
- КТ502Д — 80 В
- КТ502Е — 90 В
Максимально допустимое постоянное напряжение эмиттеp-база при токе коллектоpа, равном нулю (UЭБ0 max) при ТП = 25° C:
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 5 В
Максимально допустимая постоянная рассеиваемая мощность коллектоpа (PК max) при Т = 25° C:
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 350 мВт
Максимально допустимая температура перехода (Tп max):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 125 ° C
Максимально допустимая температура окружающей среды (Tmax):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е —
(adsbygoogle = window.adsbygoogle || []).push({});
85 ° C
Электрические характеристики транзисторов КТ502 при ТП = 25oС
Статический коэффициент передачи тока биполярного транзистора (h21Э) при (UКЭ) 5 В, (IЭ) 10 мА:
- КТ502А — 40 — 120
- КТ502Б — 80 — 240
- КТ502В — 40 — 120
- КТ502Г — 80 — 240
- КТ502Д — 40 — 120
- КТ502Е — 40 — 120
Напряжение насыщения коллектор-эмиттер (UКЭ нас):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 0,6 В
Обратный ток коллектоpа (IКБ0)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 1 мкА
Граничная частота коэффициента передачи тока (fгр)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 5 МГц
if ( rtbW >= 960 ){ var rtbBlockID = «R-A-744188-3»; }
else { var rtbBlockID = «R-A-744188-5»; }
window.yaContextCb.push(()=>{Ya.Context.AdvManager.render({renderTo: «yandex_rtb_4»,blockId: rtbBlockID,pageNumber: 4,onError: (data) => { var g = document.createElement(«ins»);
g.className = «adsbygoogle»;
g.style.display = «inline»;
if (rtbW >= 960){
g.style.width = «580px»;
g.style.height = «400px»;
g.setAttribute(«data-ad-slot», «9935184599»);
}else{
g.style.width = «300px»;
g.style.height = «600px»;
g.setAttribute(«data-ad-slot», «9935184599»);
}
g.setAttribute(«data-ad-client», «ca-pub-1812626643144578»);
g.setAttribute(«data-alternate-ad-url», stroke2);
document.getElementById(«yandex_rtb_4»).appendChild(g);
(adsbygoogle = window.adsbygoogle || []).push({}); }})});
window.addEventListener(«load», () => {
var ins = document.getElementById(«yandex_rtb_4»);
if (ins.clientHeight == «0») {
ins.innerHTML = stroke3;
}
}, true);
Емкость коллекторного перехода (CК)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 20 пФ
Емкость эмиттерного перехода (CЭ)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 15 пФ
Тепловое сопротивление переход-среда (RТ п-с)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 214 ° C/Вт
Опубликовано 16.03.2020
Графические иллюстрации характеристик
Рис. 1. Внешняя характеристика транзистора в схеме с общим эмиттером. Зависимость коллекторной нагрузки IC от напряжения коллектор-эмиттер UCE при различных токах (управления) базы IB.
Рис. 2. Зависимость статического коэффициента усиления по току от коллекторной нагрузки IC.
Зависимость снята при импульсном напряжении коллектор-эмиттер UCE = 5 В.
Рис. 3. Зависимости напряжений насыщения коллектор-эмиттер UCE(sat) и эмиттер-база UBE(sat) от величины коллекторной нагрузки IC.
Зависимость снята при соотношении амплитуд импульсов токов коллектора и базы IC/IB = 5.
Рис. 4. Снижение предельной токовой нагрузки IC в области безопасной работы транзистора при увеличении температуры корпуса прибора TC.
Кривая «Dissipation Limited» — снижение токовой нагрузки в результате общего перегрева п/п структуры.
Кривая «S/b Limited» — снижение токовой нагрузки для исключения вторичного пробоя п/п структуры локально, в местах повышенной плотности тока.
Определение теплового режима транзистора во многом сводится к определению рассеиваемой мощности и соотнесению её с областью безопасной работы транзистора (ОБР). Для транзистора, работающего в ключевом режиме, приходится учитывать потери на коммутационных интервалах, а также ряд особенностей, определяемых реактивными свойствами коллекторной цепи и источника питания.
Рис. 5. Область безопасной работы транзистора, определена при температуре среды Ta = 25°С при нагрузке транзистора одиночными импульсами (Single Pulse) различной длительности: PW = 10 мкс; 50 мкс; 100 мс; 300 мкс; 1,0 мс; 10 мс; 100 мс.
Выделяются 4 участка ограничивающих линий предельного тока коллектора:
- горизонтальный – предельный ток транзистора, определяющий устойчивость паяных соединений. При возрастании температуры корпуса вводится поправка согласно графику Рис. 4;
- участок «Dissipation Limited» – предельный ток, ограничивающий общий нагрев п/п структуры;
- участок «S/b Limited» — ограничение тока исходя из недопущения вторичного пробоя п/п структуры;
- вертикальный участок – предельное напряжение коллектор-эмиттер, не приводящее к лавинному пробою п/п структуры.
Характеристики ОБР по Рис. 5 подходят для анализа безопасной работы транзистора при резистивном или емкостном характере нагрузки, а также при любой нагрузке на интервале проводимости (ton). См. диаграмму тока коллектора в импульсном режиме выше.
В схеме с индуктивной нагрузкой на коммутационном интервале (tstg + tf), при восстановлении непроводящего состояния, возникающие на транзисторе пиковые перенапряжения могут превышать критические значения и вызвать пробой п/п структуры. Для уменьшения перенапряжений вводятся ограничители напряжения: снабберные RC-цепи, активные ограничители и т. п. Для уменьшения потерь (уменьшения длительности коммутационного интервала) в цепь управления (базы) транзистора вводится отрицательное напряжение смещения.
Увеличение напряжений при вводе отрицательного смещения и ограничение коллекторного тока отражаются на конфигурации ОБР. Такая ОБР является неотъемлемой характеристикой работы транзистора в переключающем режиме с индуктивной нагрузкой.
Рис. 6. Область безопасной работы с обратным смещением. Характеристика снята при условии Tc ≤ 100°C.
Увеличение UCEX(sus) при значительном ограничении тока коллектора – результат ввода ограничителей коммутационных перенапряжений до уровня 450 В.
Условиями безопасной (корректной) работы транзистора в ключевом режиме является выполнение следующих условий:
- непревышение температурных ограничений по структуре в целом;
- токи и напряжения на интервале включения (ton) не превышают ограничений ОБР;
- токи и напряжения на интервале выключения (tstg + tf) не превышают ограничений ОБР с обратным смещением.
Аналоги
Для замены могут подойти транзисторы кремниевые, со струкрурой NPN, эпитаксиально-планарные, предназначенные для применения в схемах усилителей низкой частоты, дифференциальных и операционных усилителей.
Отечественное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130 | 80 | 3,5 | — | ≤ 0,25 | SOT-23 |
КТ3102А | 0,25 | 50 | 50 | 5 | 0,1 | — | 100…200 | 150 | ≤ 6 | 10 | — | ТО-92, ТО-18 |
КТ3102Б | 0,25 | 50 | 50 | 5 | 0,1 | — | 200…500 | 150 | ≤ 6 | 10 | — | ТО-92, ТО-18 |
КТ602А/Б | 0,85 | 120 | 100 | 5 | 0,075 | 150 | 20…80 | 150 | ≤ 4 | — | ≤ 3,0 | ТО-126 |
КТ602В/Г | 0,85 | 80 | 70 | 5 | 0,075 | 150 | 15…80 | 150 | ≤ 4 | — | ≤ 3,0 | ТО-126 |
КТ611А/Б | 0,8 | 200 | 180 | 4 | 0,1 | 150 | 10…120 | ≥ 60 | ≤ 5 | — | ≤ 0,8 | ТО-126 |
КТ611В/Г | 0,8 | 180 | 180 | 4 | 0,1 | 150 | 10…120 | ≥ 60 | ≤ 5 | — | ≤ 0,8 | ТО-126 |
КТ660А | 0,5 | 50 | 45 | 5 | 0,8 | 150 | 110…220 | ≥ 200 | ≤ 10 | — | ≤ 0,5 | ТО-92 |
Зарубежное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус | Маркировка |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2SC1815 | 0,4 | 60 | 50 | 5 | 0,15 | 150 | 70…700 | 80 | ≤ 3,5 | 1…10 | 0,25 | TO-92 | — |
CSC3114/R | 0,4 | — | 50 | — | 0,15 | — | 100 | 100 | ≤ 3,5 | ≤ 100 | ≤ 0,25 | TO-92 | — |
CSC3114S | 0,4 | — | 50 | — | 0,15 | — | 140 | 100 | — | — | — | TO-92 | — |
CSC3114V | 0,4 | — | 50 | — | 0,15 | — | 280 | 100 | — | — | — | TO-92 | — |
CSC3199 | 0,4 | — | 50 | — | 0,15 | — | 70…700 | 80 | — | — | — | TO-92 | — |
CSC3331/R/S/T | 0,5 | — | 50 | — | 0,2 | — | 70 | 200 | — | — | — | TO-92 | — |
CSC3331TU/U/V | 0,5 | — | 50 | — | 0,2 | — | 70 | 200 | — | — | — | TO-92 | — |
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130 | 80 | — | — | 0,25 | SOT-23 | HF |
2N5551SC | 0,35 | 180 | 160 | 6 | 0,6 | 150 | 150 | 100 | ≤ 6 | ≤ 8 | ≤ 0,5 | SOT-23 | ZFC |
2PD601BRL | 0,25 | 60 | 50 | 6 | 0,2 | 150 | 210 | 100 | ≤ 3 | — | ≤ 0,25 | SOT-23 | ML٭ |
2PD601BSL | 0,25 | 60 | 50 | 6 | 0,2 | 150 | 290 | 100 | ≤ 3 | — | ≤ 0,25 | SOT-23 | MM٭ |
2PD602ASL | 0,25 | 60 | 50 | 5 | 0,5 | 150 | 170 | 180 | ≤ 15 | — | ≤ 0,6 | SOT-23 | SF |
2SC2412-R | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 180 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BR |
2SC2412-S | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 270 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BS |
2SC945LT1 | 0,23 | 60 | 50 | 5 | 0,15 | 150 | 200 | 150 | ≤ 3,5 | — | ≤ 0,3 | SOT-23 | L6 |
2STR1160 | 0,5 | 60 | 50 | 5 | 1 | 150 | 250 | 150 | ≤ 3,5 | — | ≤ 0,43 | SOT-23 | 160 |
BCV47 | 0,36 | 80 | 60 | 10 | 0,5 | 150 | 10000 | 170 | ≤ 3,5 | — | ≤ 1,0 | SOT-23 | DK, FG, FGp, FGs, FGt, W |
BTC2412N3 | 0,225 | 60 | 50 | 7 | 0,2 | 150 | 180 | 80 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | C4 |
BTD2150N3 | 0,225 | 80 | 50 | 6 | 4 | 150 | 270 | 175 | 14 | — | ≤ 0,32 | SOT-23 | CF |
BTN6427N3 | 0,225 | 100 | 60 | 12 | 0,5 | 150 | 10000 | ≤ 7 | — | ≤ 1,5 | SOT-23 | 1N | |
CMPT3820 | 0,35 | 80 | 60 | 5 | 1 | 150 | 200 | 150 | ≤ 10 | — | ≤ 0,28 | SOT-23 | 38C |
CMPT491E | 0,35 | 80 | 60 | 5 | 1 | 150 | 200 | 150 | ≤ 10 | — | ≤ 0,4 | SOT-23 | C49 |
INC5001AC1 | 0,2 | 80 | 60 | 5 | 1 | 150 | 130 | 240 | ≤ 10 | — | ≤ 0,25 | SOT-23 | XY |
INC5006AC1 | 0,2 | 100 | 50 | 7 | 3 | 150 | 400 | 250 | 13 | — | ≤ 0,2 | SOT-23 | CER |
KMMT619 | 0,35 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 20 | — | ≤ 0,5 | SOT-23 | 619, 619H |
KST6428 | 0,35 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | — | SOT-23 | 1K |
L2SC1623RLT1G | 0,225 | 60 | 50 | 7 | 0,15 | 150 | 180 | 250 | ≤ 3 | — | ≤ 0,3 | SOT-23 | L6 |
L2SC1623SLT1G | 0,225 | 60 | 50 | 7 | 0,15 | 150 | 270 | 250 | ≤ 3 | — | ≤ 0,3 | SOT-23 | L7 |
L2SC2412KRLT1G | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 180 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BR |
L2SC2412KSLT1G | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 270 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | G1F |
L2SC5343RLT1G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 180 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 7R |
L2SC5343SLT1G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 270 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 7S |
LMBT6428LT1G | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | ≤ 0,5 | SOT-23 | 1KM | |
MMBT5343-G/L | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 5343 |
MMBT6428 | 0,3 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,6 | SOT-23 | 1K, 1KM |
MMBT6428L/LT1/LT1G | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,6 | SOT-23 | 1KM |
MMBT945-H/L | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200/130 | 150 | ≤ 3 | — | ≤ 0,3 | SOT-23 | CR |
MMBTA28 | 0,35 | 80 | 80 | 12 | 0,8 | 150 | 10000 | 125 | ≤ 8 | — | ≤ 1,5 | SOT-23 | 3SS K6R |
NXP3875G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | ٭JF |
PBSS4041NT | 0,3 | 60 | 60 | 5 | 3,8 | 150 | 300 | 175 | 17 | — | ≤ 0,3 | SOT-23 | ٭BK |
PBSS4160T | 0,3 | 80 | 60 | 5 | 1 | 150 | 250 | 150 | ≤ 10 | — | ≤ 0,25 | SOT-23 | ٭U5 |
PBSS8110T | 0,3 | 120 | 100 | 5 | 1 | 150 | 150 | 100 | ≤ 7,5 | — | ≤ 0,2 | SOT-23 | ٭U8 |
SSTA28 | 0,2 | 80 | 80 | 12 | 0,3 | 150 | 10000 | 200 | ≤ 8 | — | ≤ 1,5 | SOT-23 SST3 | RAT |
TMPS1654N7 | 0,225 | 80 | 160 | 5 | 0,15 | 150 | 150 | 100 | ≤ 8 | — | ≤ 1,5 | SOT-23 | N7 |
TMPT6428 | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,2 | SOT-23 | 1K |
Примечание: данные в таблицах взяты из даташип компаний-производителей.
Туннельные транзисторы
Одной из главных задач производителей полупроводниковых устройств является проектирование транзисторов, которые можно переключать малыми напряжениями. Решить её способны туннельные транзисторы. Такие устройства управляются с помощью квантового туннельного эффекта. Таким образом, при наложении внешнего напряжения переключение транзистора происходит быстрее, так как электроны с большей вероятностью преодолевают диэлектрический барьер. В результате устройству требуется в несколько раз меньшее напряжение для работы.
Разработкой туннельных транзисторов занимаются ученые из МФТИ и японского университета Тохоку. Они использовали двухслойный графен, чтобы создать устройство, которое работает в 10–100 раз быстрее кремниевых аналогов. По словам инженеров, их технология позволит спроектировать процессоры, которые будут в двадцать раз производительнее современных флагманских моделей.
/ фото PxHere PD
В разное время прототипы туннельных транзисторов реализовывались с использованием различных материалов — помимо графена, ими были нанотрубки и кремний. Однако технология до сих пор не покинула стены лабораторий, и о масштабном производстве устройств на её основе речи не идет.