Характеристики транзистора a928a (ksa928a)

Транзистор а1015: характеристики (параметры), российские аналоги, цоколевка

Основные характеристики и параметры транзисторов

Классификация транзисторов. Проводимость, усиление, параметры, определяющие мощность, допустимое напряжение, частотные и шумовые свойства транзистора.

Транзистор, в общем понимании этого слова – это полупроводниковый прибор, как правило, с тремя выводами, способный усиливать поступающий на него сигнал. Выполняя функции усиления, преобразования, генерирования, а также коммутации сигналов в электрических цепях, в данный момент транзистор является основой подавляющего большинства электронных устройств и интегральных микросхем.

На принципиальных схемах транзистор обычно обозначается латинскими буквами «VT» или «Q» с добавлением позиционного номера (например, VT12 или Q12).

В отечественной документации прошлого века применялись обозначения «Т», «ПП» или «ПТ». Преобладающее применение в промышленных и радиолюбительских конструкциях находят два типа транзисторов – биполярные и полевые. Какими они бывают?

ОСНОВНАЯ КЛАССИФИКАЦИЯ, ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ.

Основная классификация, определяющая область применения транзисторов, ведётся по: исходному материалу, на основе которого они сделаны, структуре проводимости, максимально допустимому напряжению, максимальной мощности, рассеиваемой на коллекторе, частотным свойствам, шумовым характеристикам, крутизне передаточной характеристики (для полевых) или статическому коэффициенту передачи тока (для биполярных транзисторов) . Рассмотрим перечисленные пункты классификации более детально.

По исходному полупроводниковому материалу транзисторы классифицируются на: — германиевые (в настоящее время не производятся); — кремниевые (наиболее широко представленный класс); — из арсенида галлия (в основном СВЧ транзисторы) и др.

По структуре транзисторы классифицируются на: — p-n-p структуры – биполярные транзисторы «прямой проводимости»; — n-p-n структуры – биполярные транзисторы «обратной проводимости»; — p-типа – полевые транзисторы с «p-типом проводимости»; — n-типа – полевые транзисторы с «n-типом проводимости». В свою очередь, полевые транзисторы подразделяются на приборы с управляющим p-n-переходом (JFET-транзисторы) и транзисторы с изолированным затвором (МДП или МОП-транзисторы).

По параметру мощности транзисторы делятся на: — транзисторы малой мощности (условно Рmах — транзисторы средней мощности (0,3 — мощные транзисторы (Рmах >1,5 Вт). Также косвенным показателем мощности транзистора является параметр максимально допустимого тока коллектора (Iк_max).

По параметру максимально допустимого напряжения Uкэ или Uси транзисторы делятся на: — транзисторы общего применения (условно Uкэ_mах — высоковольтные транзисторы (Uкэ_mах > 100 В). У современных биполярных и полевых транзисторов параметр Uкэ_mах (Uси_mах) может достигать нескольких тысяч вольт!

По частотным характеристикам транзисторы делятся на: — низкочастотные транзисторы (условно Fгр — среднечастотные транзисторы (3 — высокочастотные транзисторы (30 — сверхвысокочастотные транзисторы (Fгр > 300 МГц); Основным параметром, характеризующим быстродействия транзистора, является граничная частота коэффициента передачи тока (Fгр). Косвенным – входная и выходная ёмкости. Для транзисторов, разработанных для использования в ключевых схемах, также может указываться параметр задержки переключения (tr и ts).

По шумовым характеристикам транзисторы делятся на: — транзисторы с ненормированным коэффициентом шума; — транзисторы с нормированным коэффициентом шума (Кш).

Коэффициент передачи тока (h21 – для биполярного транзистора) и крутизна передаточной характеристики (S – для полевого) являются одними из основных параметров полупроводника. От него зависят как качественные показатели транзисторного усилительного каскада, так и требования, предъявляемые к предыдущим и последующим каскадам.

Однако давайте будем считать эту статью вводной, а углубляться и подробно рассуждать о влиянии тех или иных параметров на работу и поведение биполярного или полевого транзистора будем на следующих страницах. Полный перечень статей, посвящённых описанию работы транзистора, а также расчётам каскадов на полевых и биполярных полупроводниках, приведён в рубрике «Это тоже может быть интересно».

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач. И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):

Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора — выходной. Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы

I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

Для нее также указывается семейство характеристик для разных значений тока базы:

Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано.

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

I_к = \beta I_б

Двигаемся дальше

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора.

И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды. Разным значениям температуры соответствуют разные кривые.

Таблица предельных значений

Работа транзистора с превышением значений, указанных в таблице, может его повредить или нарушить функционирование: пропадут или изменятся усилительные и переключающие характеристики полупроводникового прибора. Не рекомендуется допускать режимы с такими нагрузками.  Кроме того, длительная работа с превышением предельных значений может повлиять на надежность радиокомпонента в будущем.

Значения напряжения и тока в таблице соответствуют температуре окружающей среды +25°C.

Обозначение Параметр Величина Ед.изм.
Uкб max Напряжение коллектор-база 20…50 В
Uкэ max Напряжение коллектоp-эмиттеp (Rбэ=10кОм) 20…50 В
Uэб max Напряжение эмиттер-база 5 В
Iк max Постоянный ток коллектора 200 мА
Iк имп max Импульсный ток коллектора (tu 500) 250 мА
Pк max Рассеиваемая мощность коллектора 250 мВт
Tj Температура перехода 125 °C

Маркировка биполярный SMD транзисторов

Обозначение на корпусе Тип транзистора Условный аналог
15 MMBT3960 2N3960
1A BC846A BC546A
1B BC846B BC546B
1C MMBTA20 MPSA20
1D BC846
1E BC847A BC547A
1F BC847B BC547B
1G BC847C BC547C
1H BC847
1J BC848A BC548A
1K BC848B BC548B
1L BC848C BC548C
1M BC848
1P FMMT2222A 2N2222A
1T MMBT3960A 2N3960A
1X MMBT930
1Y MMBT3903 2N3903
2A FMMT3906 2N3906
2B BC849B BC549B
2C BC849C BC549C / BC109C / MMBTA70
2E FMMTA93
2F BC850B BC550B
2G BC850C BC550C
2J MMBT3640 2N3640
2K MMBT8598
2M MMBT404
2N MMBT404A
2T MMBT4403 2N4403
2W MMBT8599
2X MMBT4401 2N4401
3A BC856A BC556A
3B BC856B BC556B
3D BC856
3E BC857A BC557A
3F BC857B BC557B
3G BC857C BC557C
3J BC858A BC558A
3K BC858B BC558B
3L BC858C BC558C
3S MMBT5551
4A BC859A BC559A
4B BC859B BC559B
4C BC859C BC559C
4E BC860A BC560A
4F BC860B BC560B
4G BC860C BC560C
4J FMMT38A
449 FMMT449
489 FMMT489
491 FMMT491
493 FMMT493
5A BC807-16 BC327-16
5B BC807-25 BC327-25
5C BC807-40 BC327-40
5E BC808-16 BC328-16
5F BC808-25 BC328-25
5G BC808-40 BC328-40
549 FMMT549
589 FMMT589
591 FMMT591
593 FMMT593
6A BC817-16 BC337-16
6B BC817-25 BC337-25
6C BC817-40 BC337-40
6E BC818-16 BC338-16
6F BC818-25 BC338-25
6G BC818-40 BC338-40
9 BC849BLT1
AA BCW60A BC636 / BCW60A
AB BCW60B
AC BCW60C BC548B
AD BCW60D
AE BCX52
AG BCX70G
AH BCX70H
AJ BCX70J
AK BCX70K
AL MMBTA55
AM BSS64 2N3638
AS1 BST50 BSR50
B2 BSV52 2N2369A
BA BCW61A BC635
BB BCW61B
BC BCW61C
BD BCW61D
BE BCX55
BG BCX71G
BH BCX71H BC639
BJ BCX71J
BK BCX71K
BN MMBT3638A 2N3638A
BR2 BSR31 2N4031
C1 BCW29
C2 BCW30 BC178B / BC558B
C5 MMBA811C5
C6 MMBA811C6
C7 BCF29
C8 BCF30
CE BSS79B
CEC BC869 BC369
CF BSS79C
CH BSS82B / BSS80B
CJ BSS80C
CM BSS82C
D1 BCW31 BC108A / BC548A
D2 BCW32 BC108A / BC548A
D3 BCW33 BC108C / BC548C
D6 MMBC1622D6
D7 BCF32
D8 BCF33 BC549C / BCY58 / MMBC1622D8
DA BCW67A
DB BCW67B
DC BCW67C
DE BFN18
DF BCW68F
DG BCW68G
DH BCW68H
E1 BFS17 BFY90 / BFW92
EA BCW65A
EB BCW65B
EC BCW65C
ED BCW65C
EF BCW66F
EG BCW66G
EH BCW66H
F1 MMBC1009F1
F3 MMBC1009F3
FA BFQ17 BFW16A
FD BCV26 MPSA64
FE BCV46 MPSA77
FF BCV27 MPSA14
FG BCV47 MPSA27
GF BFR92P
H1 BCW69
H2 BCW70 BC557B
H3 BCW89
H7 BCF70
K1 BCW71 BC547A
K2 BCW72 BC547B
K3 BCW81
K4 BCW71R
K7 BCV71
K8 BCV72
K9 BCF81
L1 BSS65
L2 BSS70
L3 MMBC1323L3
L4 MMBC1623L4
L5 MMBC1623L5
L6 MMBC1623L6
L7 MMBC1623L7
M3 MMBA812M3
M4 MMBA812M4
M5 MMBA812M5
M6 BSR58 / MMBA812M6 2N4858
M7 MMBA812M7
O2 BST82
P1 BFR92 BFR90
P2 BFR92A BFR90
P5 FMMT2369A 2N2369A
Q3 MMBC1321Q3
Q4 MMBC1321Q4
Q5 MMBC1321Q5
R1 BFR93 BFR91
R2 BFR93A BFR91
S1A SMBT3904
S1D SMBTA42
S2 MMBA813S2
S2A SMBT3906
S2D SMBTA92
S2F SMBT2907A
S3 MMBA813S3
S4 MMBA813S4
T1 BCX17 BC327
T2 BCX18
T7 BSR15 2N2907A
T8 BSR16 2N2907A
U1 BCX19 BC337
U2 BCX20
U7 BSR13 2N2222A
U8 BSR14 2N2222A
U9 BSR17
U92 BSR17A 2N3904
Z2V FMMTA64
ZD MMBT4125 2N4125

Фелер 404

Auswahl von Land und Sprache beeinflusst Deine Geschäftsbedingungen, Produktpreise und Sonderangebote

Sprache

Верунг

Preise

нетто

брутто

нетто

брутто

Каталог
Ви кауфт человек
Хильфе

или другой адрес:
Дом

Abonnieren Sie jetzt

В том же информационном бюллетене вы найдете самые интересные и интересные сведения о новых продуктах, товарах и услугах на веб-сайте TME.

* Pflichtfeld

AnmeldenAuf Mitteilungsblatt verzichten

больше
Венигер

TME-Newsletter abonnieren

Анеботе — Рабатте — Нойхайтен. Sei auf dem Laufenden mit dem Angebot von TME

AGB zum Информационный бюллетень
Auf Mitteilungsblatt verzichten

Daten werden verarbeitet

Die Operation wurde erfolgreich durchgeführt.

Ein unerwarteter Fehler ist aufgetreten. Bitte versuche noch einmal.

Логин

Пароль

Логин и пароль заранее.

↑ После принялся за преобразователь

Так как усилитель довольно мощный, да и один преобразователь уже был, решил собрать второй, правда из того что было. Так что, он мне обошелся в символическую сумму. Схема и печатка преобразователя хорошо себя зарекомендовала, по ней я уже около 6 штук собрал, и все они замечательно работают. Подробное описание и печатка прикреплены ниже, от себя могу добавить что трансформатор намотан на кольце 2000нм размером 45х28х12.

Две первички у меня намотаны в 6 витков каждая проводом 1мм в 4 жилы. Две вторички намотаны 2ух милиметровым проводом по 12 витков каждая. На выходе преобразователя +-36в при входных 12в , при подключении усилителей вольтаж опускается до +-34в.

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Маркировка полевых SMD транзисторов

Маркировка Тип прибора Маркировка Тип прибора
       
6A MMBF4416 C92 SST4392
6B MMBF5484 C93 SST4393
6C MMBFU310 H16 SST4416
6D MMBF5457 I08 SST108
6E MMBF5460 I09 SST109
6F MMBF4860 I10 SST110
6G MMBF4393 M4 BSR56
6H MMBF5486 M5 BSR57
6J MMBF4391 M6 BSR58
6K MMBF4932 P01 SST201
6L MMBF5459 P02 SST202
6T MMBFJ310 P03 SST203
6W MMBFJ175 P04 SST204
6Y MMBFJ177 S14 SST5114
B08 SST6908  S15  SST5115
B09 SST6909  S16 SST5116
B10 SST6910  S70 SST270
C11 SST111  S71 SST271
C12 SST112  S74  SST174
C13 SST113  S75 SST175
C41 SST4091  S76 SST176
C42 SST4092  S77 SST177
C43 SST4093  TV MMBF112
C59 SST4859  Z08 SST308
C60 SST4860  Z09 SST309
C61 SST4861  Z10 SST310
C91 SST4391    

Электрические параметры

Характеристика Обозначение Параметры при измерениях Значения
Характеристики выключенного состояния
Напряжение пробоя коллектор-база, В U(BR)CBO IC = 100 мкА, IE = 0 ≥ 60
Напряжение пробоя коллектор-эмиттер, В U(BR)CEO IC = 100 мкА, IB = 0 ≥ 50
Ток коллектора выключения, мкА ICBO UCB = 60 В, IE = 0 ≤ 0,1
Ток коллектора выключения, мкА ICEO UCE = 50 В, IB = 0 ≤ 0,1
Ток эмиттера выключения, мкА IEBO UEB = 5 В, IC = 0 ≤ 0,1
Характеристики включенного состояния
Напряжение насыщения коллектор-эмиттер, В UCE(sat) IC = 100 мА, IB = 10 мА ≤ 0,25
Напряжение насыщения база-эмиттер, В UBE(sat) IC = 100 мА, IB = 10 мА ≤ 1,0
Статический коэффициент усиления по току hFE (1) UCE = 6,0 В, IC = 2,0 мА 70…700
hFE (2) UCE = 6,0 В, IC = 150,0 мА ≥ 25
Характеристики работы в режиме малого сигнала
Граничная частота усиления (частота среза), МГц fT IC = 1,0 мА, UCE = 10 В ≥ 80
Выходная емкость (коллекторного перехода), пФ Cob UCB = 10 В, IE = 0, f = 1 МГц ≤ 3,5
Коэффициент шума NF IC = 0,1 мА, UCE = 6 В, RG = 10 кОм, f = 1,0 кГц 1…10

Схема одноканального усилителя мощностью 200 Вт на 2SC5200 2SA1943

Силовые транзисторы схемы усилителя на 200 Вт не требуют классической настройки тока покоя выходных транзисторов 2SC5200 и 2SA1943. Одноканальный усилитель может выдавать среднеквадратичную мощность 100 Вт с сопротивлением динамика 8 Ом и 200 Вт с нагрузкой 4 Ом.

Рабочее постоянное напряжение одноканального усилителя должно быть 2X50V и ток 6A (можно использовать готовые трансформаторы 2X33VAC или 2X36VAC), конденсаторы фильтра в цепи питания нужно устанавливать от 4700uf до 10.000uf. В качестве диодных мостов можно использовать готовую сборку KBU10M на 1000v/10A или четыре выпрямительных диода P600J, с максимальным постоянным обратным напряжением 600v и максимальным постоянным прямым током 6А.

Керамический конденсатор 330pF защищает усилитель от высокочастотных колебаний. Если вы не можете найти 330pF, тогда вместо него можете установить емкость на 270pF.

Что касается транзисторов 2SA1015, установленных в дифференциальном каскаде, то автор заявляет, что продавцов сбывающих поддельные транзисторы на рынке очень много. Поэтому, нужно быть внимательнее при покупке. Чтобы понять, что транзисторы оригинальные, необходимо измерить коэффициент усиления транзистора по току (hFE) цифровым мультиметром.

Транзистор 2SA1015 должен показать параметр 180 или чуть меньше при измерении hFE. Вместо 2SA1015 можно использовать 2N5401, но соединения выводов будут несколько другие, поэтому будьте осторожны. При сборке печатной платы следует менять ножки базы и коллектора (я экспериментировал с транзисторами 2SA733, которые у меня есть)

Транзисторы 2SC5200 и 2SA1943 должны быть установлены на радиаторы через изоляционные прокладки, хорошо пропускающие тепло, например, керамические или слюдяные.

Кроме этого, для эффективного охлаждения транзисторов TIP41-TIP42 можно использовать кулер, я пока оставил отверстие для его установки, посмотрю как все будет работать, потом видимо установлю и вентилятор.

Катушка на выходе усилителя имеет параметр 5 мкГн и намотана медным проводом диаметром 1мм в количестве 11 витков на резисторе 10 Ом, рассчитанным на мощность 1 Вт.

Тестирование усилителя 200 Вт и измерения напряжения

Представленная здесь схема заслуживает доверия, так как источник проекта довольно надежен, и, поскольку схема была сделана нашими читателями раньше, то у меня получилось быстро собрать аппарат и сразу приступил к тесту. В моем распоряжении были готовый трансформатор 2X30V и басовый громкоговоритель на 50 Вт, а также среднечастотный динамик 30 Вт. Я не мог увеличить громкость более чем на 50%, так как было уже слишком громко, качество звука при этом было отличным. Резистор 27 Ом 1 Вт я не использовал, вместо него я применил 2 параллельно соединенных резюка 56 Ом.

Размеры печатной платы составляют 100X49 мм, а чертеж однослойной печатной платы был выполнен с помощью программы Sprint Layout PCB.

Максимальное напряжение питания при использовании выходных транзисторов 2SC5200 и 2SA1943 (2SD1047 (NPN) 2SB817 (PNP)), может быть 2X62v постоянного тока, в этом случае напряжение используемых конденсаторов должно быть более 63v и вместо TIP41 следует установить TIP42 2SCC2073 (NPN) 2SA940 (PNP) или 2SA1837 (PNP) 2SC4793 (NPN). Я думаю, 2X50V или 2x30v будет достаточно, даже если вы захотите громкого звука.

Перечень компонентов одноканального усилителя 200 Вт:

Транзисторы

2X 2SC5200
2X 2SA1943
3X A1015
2X TIP41C
2X TIP42C

Резисторы

2 резистора 6,8 Ом — 1 Вт; (синий, серый, золотой)
2X 100-Ом — 1 Вт; (коричневый, черный, коричневый)
2X 10 Ом — 1 Вт; (коричневый, черный, черный)
270 Ом — 1 Вт; (красный, фиолетовый, коричневый)
56 Ом — 1 Вт; (зеленый, синий, черный)
27 Ом — 1 Вт; (красный, фиолетовый, черный)
4X0,47 Ом — 5Вт или 0,33 Ом — 5Вт; керамический резистор
820 Ом — 1/4 Вт; (серый, красный, коричневый)
10 кОм — 1/4 Вт; (коричневый, черный, оранжевый)
330 Ом — 1/4 Вт; (оранжевый, оранжевый, коричневый)
18 кОм — 1/4 Вт; (коричневый, серый, оранжевый)
1 кОм — 1/4 Вт; (черно-коричневый, красный)

Конденсаторы

100НФ (104) 100В
47 мкФ 63 В
2,2 мкФ 63 В
330 пФ (331) (керамический или многослойный)

Диоды

5X 1N4004

Скачать: Макет печатной платы

Предыдущая запись Что такое низкоуровневое форматирование SD-карты
Следующая запись Стерео усилитель на TDA1554Q

smd-код m6

smd-код «M6»

Подробная информация о производителях — в GUIDE’е, о типах корпусов — здесь
код наименование функция корпус производитель примечания
M6 2SA812 pnp: 50В/100мА h31=200. ..400 sot23 Galaxy Semi  
M6 BSS66 npn: 40В/200мА 250МГц h31=150 sot23 Diodes  
M6 BZX384-B22 стабилитрон 300мВт: 22В ±2% sod323 NXP  
M6 MMBA812M6 pnp: 40В/100мА h31=200…400 sot23 Motorola  
M6 Si2316BDS nМОП: 30В/4,5А/50мОм sot23

Vishay
 
M6##
RP114K241B
LDO: 2,4В/300мА
dfn4
Ricoh
## — lot-код

M6A
ADM1816-20AKS/ART
супервизор 2,55В, open-drain, active-low
sc70/sot23
ADI
 

M6A
MMBF4416
n-канальный ВЧ FET: 30В
sot23
ON Semi
 

M6B
ADM1816-22AKS/ART
супервизор 2,18В, open-drain, active-low
sc70/sot23
ADI
 

M6C
ADM1816-23AKS/ART
супервизор 2,31В, open-drain, active-low

sc70/sot23
ADI
 
M6C
MMBFU310
n-канальный ВЧ FET: 25В
sot23
ON Semi
 

M6E
ADM1816-10AKS/ART
супервизор: 2,88В open-drain/active-low
sc70/sot23
ADI
 

M6G
SMMBF4393
nFET: 30В/50мА Ugs(off)=-3В
sot23
On Semi
 

M6H
ADM1816-20AKSZ/ARTZ
супервизор: 2. 55В open-drain/active-low

sc70/sot23
ADI
RoHS
M6H
MMBD354
два смесительных диода ОК: 7В/10мА
sot23
LGE | ON Semi
 

M6J
ADM803MAKSZ
супервизор: 4,38В open-drain/active-low
sc70
ADI
RoHS

M6K
ADM1816-5AKS/ART
супервизор: 3,06В open-drain/active-low
sc70/sot23
ADI
 

M6L
ADM803LAKSZ
супервизор: 4,63В open-drain/active-low
sc70
ADI
RoHS

M6M
ADM803RAKSZ
супервизор: 2,63В open-drain/active-low
sc70
ADI
RoHS

M6N
ADM803ZAKSZ
супервизор: 2,32В open-drain/active-low
sc70
ADI
RoHS

M6P
ADM809JAKSZ/JARTZ
супервизор: 4,00В push-pull/active-low
sc70/sot23
ADI
RoHS

M6P
BSR58
n-канальный FET: 40В/50мА
sot23
NXP
 

M6R
ADM809LAKSZ
супервизор: 4,63В push-pull/active-low

sc70
ADI
RoHS

M6S
ADM810MAKSZ/MARTZ
супервизор: 4,38В push-pull/active-high
sc70/sot23
ADI
RoHS

M6T
ADM810SAKSZ/SARTZ
супервизор: 2,93В push-pull/active-high
sc70/sot23
ADI
RoHS

M6U
ADM810ZAKSZ/ZARTZ
супервизор: 2,32В push-pull/active-high
sc70/sot23
ADI
RoHS

M6V
ADM810JAKSZ/JARTZ
супервизор: 4,00В push-pull/active-high

sc70/sot23
ADI
RoHS

M6W
ADM810LAKSZ/LARTZ
супервизор: 4,63В push-pull/active-high
sc70/sot23
ADI
RoHS

M6X
ADM1813-5AKSZ/ARTZ
супервизор: 4,62В open-drain/active-low
sc70/sot23
ADI
RoHS

M6Y
ADM1813-10AKSZ/ARTZ
супервизор: 4,35В open-drain/active-low
sc70/sot23
ADI
RoHS

M6Z
ADM1811-5AKSZ/ARTZ
супервизор: 4,62В push-pull/active-low
sc70/sot23
ADI

RoHS

МАЛОМОЩНЫЕ УСИЛИТЕЛИ

Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030, потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 — умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему — LM1875, 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.

Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875, плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа — все компоненты к тому времени имелись в наличии.

Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: