Основные характеристики и параметры транзисторов
Классификация транзисторов. Проводимость, усиление, параметры, определяющие мощность, допустимое напряжение, частотные и шумовые свойства транзистора.
Транзистор, в общем понимании этого слова – это полупроводниковый прибор, как правило, с тремя выводами, способный усиливать поступающий на него сигнал. Выполняя функции усиления, преобразования, генерирования, а также коммутации сигналов в электрических цепях, в данный момент транзистор является основой подавляющего большинства электронных устройств и интегральных микросхем.
На принципиальных схемах транзистор обычно обозначается латинскими буквами «VT» или «Q» с добавлением позиционного номера (например, VT12 или Q12).
В отечественной документации прошлого века применялись обозначения «Т», «ПП» или «ПТ». Преобладающее применение в промышленных и радиолюбительских конструкциях находят два типа транзисторов – биполярные и полевые. Какими они бывают?
ОСНОВНАЯ КЛАССИФИКАЦИЯ, ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ.
Основная классификация, определяющая область применения транзисторов, ведётся по: исходному материалу, на основе которого они сделаны, структуре проводимости, максимально допустимому напряжению, максимальной мощности, рассеиваемой на коллекторе, частотным свойствам, шумовым характеристикам, крутизне передаточной характеристики (для полевых) или статическому коэффициенту передачи тока (для биполярных транзисторов) . Рассмотрим перечисленные пункты классификации более детально.
По исходному полупроводниковому материалу транзисторы классифицируются на: — германиевые (в настоящее время не производятся); — кремниевые (наиболее широко представленный класс); — из арсенида галлия (в основном СВЧ транзисторы) и др.
По структуре транзисторы классифицируются на: — p-n-p структуры – биполярные транзисторы «прямой проводимости»; — n-p-n структуры – биполярные транзисторы «обратной проводимости»; — p-типа – полевые транзисторы с «p-типом проводимости»; — n-типа – полевые транзисторы с «n-типом проводимости». В свою очередь, полевые транзисторы подразделяются на приборы с управляющим p-n-переходом (JFET-транзисторы) и транзисторы с изолированным затвором (МДП или МОП-транзисторы).
По параметру мощности транзисторы делятся на: — транзисторы малой мощности (условно Рmах — транзисторы средней мощности (0,3 — мощные транзисторы (Рmах >1,5 Вт). Также косвенным показателем мощности транзистора является параметр максимально допустимого тока коллектора (Iк_max).
По параметру максимально допустимого напряжения Uкэ или Uси транзисторы делятся на: — транзисторы общего применения (условно Uкэ_mах — высоковольтные транзисторы (Uкэ_mах > 100 В). У современных биполярных и полевых транзисторов параметр Uкэ_mах (Uси_mах) может достигать нескольких тысяч вольт!
По частотным характеристикам транзисторы делятся на: — низкочастотные транзисторы (условно Fгр — среднечастотные транзисторы (3 — высокочастотные транзисторы (30 — сверхвысокочастотные транзисторы (Fгр > 300 МГц); Основным параметром, характеризующим быстродействия транзистора, является граничная частота коэффициента передачи тока (Fгр). Косвенным – входная и выходная ёмкости. Для транзисторов, разработанных для использования в ключевых схемах, также может указываться параметр задержки переключения (tr и ts).
По шумовым характеристикам транзисторы делятся на: — транзисторы с ненормированным коэффициентом шума; — транзисторы с нормированным коэффициентом шума (Кш).
Коэффициент передачи тока (h21 – для биполярного транзистора) и крутизна передаточной характеристики (S – для полевого) являются одними из основных параметров полупроводника. От него зависят как качественные показатели транзисторного усилительного каскада, так и требования, предъявляемые к предыдущим и последующим каскадам.
Однако давайте будем считать эту статью вводной, а углубляться и подробно рассуждать о влиянии тех или иных параметров на работу и поведение биполярного или полевого транзистора будем на следующих страницах. Полный перечень статей, посвящённых описанию работы транзистора, а также расчётам каскадов на полевых и биполярных полупроводниках, приведён в рубрике «Это тоже может быть интересно».
Характеристики биполярного транзистора.
Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач. И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:
I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const
В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):
Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.
Переходим ко второй крайне важной характеристике биполярного транзистора — выходной. Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы
I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const
Для нее также указывается семейство характеристик для разных значений тока базы:
Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .
Для наглядности можно изобразить эти режимы на семействе выходных характеристик:
Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.
Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано.
Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:
I_к = \beta I_б
Двигаемся дальше
На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.
В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.
Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора.
И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.
Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:
Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды. Разным значениям температуры соответствуют разные кривые.
Таблица предельных значений
Работа транзистора с превышением значений, указанных в таблице, может его повредить или нарушить функционирование: пропадут или изменятся усилительные и переключающие характеристики полупроводникового прибора. Не рекомендуется допускать режимы с такими нагрузками. Кроме того, длительная работа с превышением предельных значений может повлиять на надежность радиокомпонента в будущем.
Значения напряжения и тока в таблице соответствуют температуре окружающей среды +25°C.
Обозначение | Параметр | Величина | Ед.изм. |
---|---|---|---|
Uкб max | Напряжение коллектор-база | 20…50 | В |
Uкэ max | Напряжение коллектоp-эмиттеp (Rбэ=10кОм) | 20…50 | В |
Uэб max | Напряжение эмиттер-база | 5 | В |
Iк max | Постоянный ток коллектора | 200 | мА |
Iк имп max | Импульсный ток коллектора (tu 500) | 250 | мА |
Pк max | Рассеиваемая мощность коллектора | 250 | мВт |
Tj | Температура перехода | 125 | °C |
Маркировка биполярный SMD транзисторов
Обозначение на корпусе | Тип транзистора | Условный аналог |
15 | MMBT3960 | 2N3960 |
1A | BC846A | BC546A |
1B | BC846B | BC546B |
1C | MMBTA20 | MPSA20 |
1D | BC846 | — |
1E | BC847A | BC547A |
1F | BC847B | BC547B |
1G | BC847C | BC547C |
1H | BC847 | — |
1J | BC848A | BC548A |
1K | BC848B | BC548B |
1L | BC848C | BC548C |
1M | BC848 | — |
1P | FMMT2222A | 2N2222A |
1T | MMBT3960A | 2N3960A |
1X | MMBT930 | — |
1Y | MMBT3903 | 2N3903 |
2A | FMMT3906 | 2N3906 |
2B | BC849B | BC549B |
2C | BC849C | BC549C / BC109C / MMBTA70 |
2E | FMMTA93 | — |
2F | BC850B | BC550B |
2G | BC850C | BC550C |
2J | MMBT3640 | 2N3640 |
2K | MMBT8598 | — |
2M | MMBT404 | — |
2N | MMBT404A | — |
2T | MMBT4403 | 2N4403 |
2W | MMBT8599 | — |
2X | MMBT4401 | 2N4401 |
3A | BC856A | BC556A |
3B | BC856B | BC556B |
3D | BC856 | — |
3E | BC857A | BC557A |
3F | BC857B | BC557B |
3G | BC857C | BC557C |
3J | BC858A | BC558A |
3K | BC858B | BC558B |
3L | BC858C | BC558C |
3S | MMBT5551 | — |
4A | BC859A | BC559A |
4B | BC859B | BC559B |
4C | BC859C | BC559C |
4E | BC860A | BC560A |
4F | BC860B | BC560B |
4G | BC860C | BC560C |
4J | FMMT38A | — |
449 | FMMT449 | — |
489 | FMMT489 | — |
491 | FMMT491 | — |
493 | FMMT493 | — |
5A | BC807-16 | BC327-16 |
5B | BC807-25 | BC327-25 |
5C | BC807-40 | BC327-40 |
5E | BC808-16 | BC328-16 |
5F | BC808-25 | BC328-25 |
5G | BC808-40 | BC328-40 |
549 | FMMT549 | — |
589 | FMMT589 | — |
591 | FMMT591 | — |
593 | FMMT593 | — |
6A | BC817-16 | BC337-16 |
6B | BC817-25 | BC337-25 |
6C | BC817-40 | BC337-40 |
6E | BC818-16 | BC338-16 |
6F | BC818-25 | BC338-25 |
6G | BC818-40 | BC338-40 |
9 | BC849BLT1 | — |
AA | BCW60A | BC636 / BCW60A |
AB | BCW60B | — |
AC | BCW60C | BC548B |
AD | BCW60D | — |
AE | BCX52 | — |
AG | BCX70G | — |
AH | BCX70H | — |
AJ | BCX70J | — |
AK | BCX70K | — |
AL | MMBTA55 | — |
AM | BSS64 | 2N3638 |
AS1 | BST50 | BSR50 |
B2 | BSV52 | 2N2369A |
BA | BCW61A | BC635 |
BB | BCW61B | — |
BC | BCW61C | — |
BD | BCW61D | — |
BE | BCX55 | — |
BG | BCX71G | — |
BH | BCX71H | BC639 |
BJ | BCX71J | — |
BK | BCX71K | — |
BN | MMBT3638A | 2N3638A |
BR2 | BSR31 | 2N4031 |
C1 | BCW29 | — |
C2 | BCW30 | BC178B / BC558B |
C5 | MMBA811C5 | — |
C6 | MMBA811C6 | — |
C7 | BCF29 | — |
C8 | BCF30 | — |
CE | BSS79B | — |
CEC | BC869 | BC369 |
CF | BSS79C | — |
CH | BSS82B / BSS80B | — |
CJ | BSS80C | — |
CM | BSS82C | — |
D1 | BCW31 | BC108A / BC548A |
D2 | BCW32 | BC108A / BC548A |
D3 | BCW33 | BC108C / BC548C |
D6 | MMBC1622D6 | — |
D7 | BCF32 | — |
D8 | BCF33 | BC549C / BCY58 / MMBC1622D8 |
DA | BCW67A | — |
DB | BCW67B | — |
DC | BCW67C | — |
DE | BFN18 | — |
DF | BCW68F | — |
DG | BCW68G | — |
DH | BCW68H | — |
E1 | BFS17 | BFY90 / BFW92 |
EA | BCW65A | — |
EB | BCW65B | — |
EC | BCW65C | — |
ED | BCW65C | — |
EF | BCW66F | — |
EG | BCW66G | — |
EH | BCW66H | — |
F1 | MMBC1009F1 | — |
F3 | MMBC1009F3 | — |
FA | BFQ17 | BFW16A |
FD | BCV26 | MPSA64 |
FE | BCV46 | MPSA77 |
FF | BCV27 | MPSA14 |
FG | BCV47 | MPSA27 |
GF | BFR92P | — |
H1 | BCW69 | — |
H2 | BCW70 | BC557B |
H3 | BCW89 | — |
H7 | BCF70 | — |
K1 | BCW71 | BC547A |
K2 | BCW72 | BC547B |
K3 | BCW81 | — |
K4 | BCW71R | — |
K7 | BCV71 | — |
K8 | BCV72 | — |
K9 | BCF81 | — |
L1 | BSS65 | — |
L2 | BSS70 | — |
L3 | MMBC1323L3 | — |
L4 | MMBC1623L4 | — |
L5 | MMBC1623L5 | — |
L6 | MMBC1623L6 | — |
L7 | MMBC1623L7 | — |
M3 | MMBA812M3 | — |
M4 | MMBA812M4 | — |
M5 | MMBA812M5 | — |
M6 | BSR58 / MMBA812M6 | 2N4858 |
M7 | MMBA812M7 | — |
O2 | BST82 | — |
P1 | BFR92 | BFR90 |
P2 | BFR92A | BFR90 |
P5 | FMMT2369A | 2N2369A |
Q3 | MMBC1321Q3 | — |
Q4 | MMBC1321Q4 | — |
Q5 | MMBC1321Q5 | — |
R1 | BFR93 | BFR91 |
R2 | BFR93A | BFR91 |
S1A | SMBT3904 | — |
S1D | SMBTA42 | — |
S2 | MMBA813S2 | — |
S2A | SMBT3906 | — |
S2D | SMBTA92 | — |
S2F | SMBT2907A | — |
S3 | MMBA813S3 | — |
S4 | MMBA813S4 | — |
T1 | BCX17 | BC327 |
T2 | BCX18 | — |
T7 | BSR15 | 2N2907A |
T8 | BSR16 | 2N2907A |
U1 | BCX19 | BC337 |
U2 | BCX20 | — |
U7 | BSR13 | 2N2222A |
U8 | BSR14 | 2N2222A |
U9 | BSR17 | — |
U92 | BSR17A | 2N3904 |
Z2V | FMMTA64 | — |
ZD | MMBT4125 | 2N4125 |
Фелер 404
Auswahl von Land und Sprache beeinflusst Deine Geschäftsbedingungen, Produktpreise und Sonderangebote
Sprache
Верунг
Preise
нетто
брутто
нетто
брутто
Каталог
Ви кауфт человек
Хильфе
или другой адрес:
Дом
Abonnieren Sie jetzt
В том же информационном бюллетене вы найдете самые интересные и интересные сведения о новых продуктах, товарах и услугах на веб-сайте TME.
* Pflichtfeld
AnmeldenAuf Mitteilungsblatt verzichten
больше
Венигер
TME-Newsletter abonnieren
Анеботе — Рабатте — Нойхайтен. Sei auf dem Laufenden mit dem Angebot von TME
AGB zum Информационный бюллетень
Auf Mitteilungsblatt verzichten
Daten werden verarbeitet
Die Operation wurde erfolgreich durchgeführt.
Ein unerwarteter Fehler ist aufgetreten. Bitte versuche noch einmal.
Логин
Пароль
Логин и пароль заранее.
↑ После принялся за преобразователь
Так как усилитель довольно мощный, да и один преобразователь уже был, решил собрать второй, правда из того что было. Так что, он мне обошелся в символическую сумму. Схема и печатка преобразователя хорошо себя зарекомендовала, по ней я уже около 6 штук собрал, и все они замечательно работают. Подробное описание и печатка прикреплены ниже, от себя могу добавить что трансформатор намотан на кольце 2000нм размером 45х28х12.
Две первички у меня намотаны в 6 витков каждая проводом 1мм в 4 жилы. Две вторички намотаны 2ух милиметровым проводом по 12 витков каждая. На выходе преобразователя +-36в при входных 12в , при подключении усилителей вольтаж опускается до +-34в.
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
Маркировка полевых SMD транзисторов
Маркировка | Тип прибора | Маркировка | Тип прибора |
6A | MMBF4416 | C92 | SST4392 |
6B | MMBF5484 | C93 | SST4393 |
6C | MMBFU310 | H16 | SST4416 |
6D | MMBF5457 | I08 | SST108 |
6E | MMBF5460 | I09 | SST109 |
6F | MMBF4860 | I10 | SST110 |
6G | MMBF4393 | M4 | BSR56 |
6H | MMBF5486 | M5 | BSR57 |
6J | MMBF4391 | M6 | BSR58 |
6K | MMBF4932 | P01 | SST201 |
6L | MMBF5459 | P02 | SST202 |
6T | MMBFJ310 | P03 | SST203 |
6W | MMBFJ175 | P04 | SST204 |
6Y | MMBFJ177 | S14 | SST5114 |
B08 | SST6908 | S15 | SST5115 |
B09 | SST6909 | S16 | SST5116 |
B10 | SST6910 | S70 | SST270 |
C11 | SST111 | S71 | SST271 |
C12 | SST112 | S74 | SST174 |
C13 | SST113 | S75 | SST175 |
C41 | SST4091 | S76 | SST176 |
C42 | SST4092 | S77 | SST177 |
C43 | SST4093 | TV | MMBF112 |
C59 | SST4859 | Z08 | SST308 |
C60 | SST4860 | Z09 | SST309 |
C61 | SST4861 | Z10 | SST310 |
C91 | SST4391 |
Электрические параметры
Характеристика | Обозначение | Параметры при измерениях | Значения |
---|---|---|---|
Характеристики выключенного состояния | |||
Напряжение пробоя коллектор-база, В | U(BR)CBO | IC = 100 мкА, IE = 0 | ≥ 60 |
Напряжение пробоя коллектор-эмиттер, В | U(BR)CEO | IC = 100 мкА, IB = 0 | ≥ 50 |
Ток коллектора выключения, мкА | ICBO | UCB = 60 В, IE = 0 | ≤ 0,1 |
Ток коллектора выключения, мкА | ICEO | UCE = 50 В, IB = 0 | ≤ 0,1 |
Ток эмиттера выключения, мкА | IEBO | UEB = 5 В, IC = 0 | ≤ 0,1 |
Характеристики включенного состояния | |||
Напряжение насыщения коллектор-эмиттер, В | UCE(sat) | IC = 100 мА, IB = 10 мА | ≤ 0,25 |
Напряжение насыщения база-эмиттер, В | UBE(sat) | IC = 100 мА, IB = 10 мА | ≤ 1,0 |
Статический коэффициент усиления по току | hFE (1) | UCE = 6,0 В, IC = 2,0 мА | 70…700 |
hFE (2) | UCE = 6,0 В, IC = 150,0 мА | ≥ 25 | |
Характеристики работы в режиме малого сигнала | |||
Граничная частота усиления (частота среза), МГц | fT | IC = 1,0 мА, UCE = 10 В | ≥ 80 |
Выходная емкость (коллекторного перехода), пФ | Cob | UCB = 10 В, IE = 0, f = 1 МГц | ≤ 3,5 |
Коэффициент шума | NF | IC = 0,1 мА, UCE = 6 В, RG = 10 кОм, f = 1,0 кГц | 1…10 |
Схема одноканального усилителя мощностью 200 Вт на 2SC5200 2SA1943
Силовые транзисторы схемы усилителя на 200 Вт не требуют классической настройки тока покоя выходных транзисторов 2SC5200 и 2SA1943. Одноканальный усилитель может выдавать среднеквадратичную мощность 100 Вт с сопротивлением динамика 8 Ом и 200 Вт с нагрузкой 4 Ом.
Рабочее постоянное напряжение одноканального усилителя должно быть 2X50V и ток 6A (можно использовать готовые трансформаторы 2X33VAC или 2X36VAC), конденсаторы фильтра в цепи питания нужно устанавливать от 4700uf до 10.000uf. В качестве диодных мостов можно использовать готовую сборку KBU10M на 1000v/10A или четыре выпрямительных диода P600J, с максимальным постоянным обратным напряжением 600v и максимальным постоянным прямым током 6А.
Керамический конденсатор 330pF защищает усилитель от высокочастотных колебаний. Если вы не можете найти 330pF, тогда вместо него можете установить емкость на 270pF.
Что касается транзисторов 2SA1015, установленных в дифференциальном каскаде, то автор заявляет, что продавцов сбывающих поддельные транзисторы на рынке очень много. Поэтому, нужно быть внимательнее при покупке. Чтобы понять, что транзисторы оригинальные, необходимо измерить коэффициент усиления транзистора по току (hFE) цифровым мультиметром.
Транзистор 2SA1015 должен показать параметр 180 или чуть меньше при измерении hFE. Вместо 2SA1015 можно использовать 2N5401, но соединения выводов будут несколько другие, поэтому будьте осторожны. При сборке печатной платы следует менять ножки базы и коллектора (я экспериментировал с транзисторами 2SA733, которые у меня есть)
Транзисторы 2SC5200 и 2SA1943 должны быть установлены на радиаторы через изоляционные прокладки, хорошо пропускающие тепло, например, керамические или слюдяные.
Кроме этого, для эффективного охлаждения транзисторов TIP41-TIP42 можно использовать кулер, я пока оставил отверстие для его установки, посмотрю как все будет работать, потом видимо установлю и вентилятор.
Катушка на выходе усилителя имеет параметр 5 мкГн и намотана медным проводом диаметром 1мм в количестве 11 витков на резисторе 10 Ом, рассчитанным на мощность 1 Вт.
Тестирование усилителя 200 Вт и измерения напряжения
Представленная здесь схема заслуживает доверия, так как источник проекта довольно надежен, и, поскольку схема была сделана нашими читателями раньше, то у меня получилось быстро собрать аппарат и сразу приступил к тесту. В моем распоряжении были готовый трансформатор 2X30V и басовый громкоговоритель на 50 Вт, а также среднечастотный динамик 30 Вт. Я не мог увеличить громкость более чем на 50%, так как было уже слишком громко, качество звука при этом было отличным. Резистор 27 Ом 1 Вт я не использовал, вместо него я применил 2 параллельно соединенных резюка 56 Ом.
Размеры печатной платы составляют 100X49 мм, а чертеж однослойной печатной платы был выполнен с помощью программы Sprint Layout PCB.
Максимальное напряжение питания при использовании выходных транзисторов 2SC5200 и 2SA1943 (2SD1047 (NPN) 2SB817 (PNP)), может быть 2X62v постоянного тока, в этом случае напряжение используемых конденсаторов должно быть более 63v и вместо TIP41 следует установить TIP42 2SCC2073 (NPN) 2SA940 (PNP) или 2SA1837 (PNP) 2SC4793 (NPN). Я думаю, 2X50V или 2x30v будет достаточно, даже если вы захотите громкого звука.
Перечень компонентов одноканального усилителя 200 Вт:
Транзисторы
2X 2SC5200
2X 2SA1943
3X A1015
2X TIP41C
2X TIP42C
Резисторы
2 резистора 6,8 Ом — 1 Вт; (синий, серый, золотой)
2X 100-Ом — 1 Вт; (коричневый, черный, коричневый)
2X 10 Ом — 1 Вт; (коричневый, черный, черный)
270 Ом — 1 Вт; (красный, фиолетовый, коричневый)
56 Ом — 1 Вт; (зеленый, синий, черный)
27 Ом — 1 Вт; (красный, фиолетовый, черный)
4X0,47 Ом — 5Вт или 0,33 Ом — 5Вт; керамический резистор
820 Ом — 1/4 Вт; (серый, красный, коричневый)
10 кОм — 1/4 Вт; (коричневый, черный, оранжевый)
330 Ом — 1/4 Вт; (оранжевый, оранжевый, коричневый)
18 кОм — 1/4 Вт; (коричневый, серый, оранжевый)
1 кОм — 1/4 Вт; (черно-коричневый, красный)
Конденсаторы
100НФ (104) 100В
47 мкФ 63 В
2,2 мкФ 63 В
330 пФ (331) (керамический или многослойный)
Диоды
5X 1N4004
Скачать: Макет печатной платы
Предыдущая запись Что такое низкоуровневое форматирование SD-карты
Следующая запись Стерео усилитель на TDA1554Q
smd-код m6
smd-код «M6»
Подробная информация о производителях — в GUIDE’е, о типах корпусов — здесь | |||||
код | наименование | функция | корпус | производитель | примечания |
---|---|---|---|---|---|
M6 | 2SA812 | pnp: 50В/100мА h31=200. ..400 | sot23 | Galaxy Semi | |
M6 | BSS66 | npn: 40В/200мА 250МГц h31=150 | sot23 | Diodes | |
M6 | BZX384-B22 | стабилитрон 300мВт: 22В ±2% | sod323 | NXP | |
M6 | MMBA812M6 | pnp: 40В/100мА h31=200…400 | sot23 | Motorola | |
M6 | Si2316BDS | nМОП: 30В/4,5А/50мОм | sot23 |
Vishay
M6##
RP114K241B
LDO: 2,4В/300мА
dfn4
Ricoh
## — lot-код
M6A
ADM1816-20AKS/ART
супервизор 2,55В, open-drain, active-low
sc70/sot23
ADI
M6A
MMBF4416
n-канальный ВЧ FET: 30В
sot23
ON Semi
M6B
ADM1816-22AKS/ART
супервизор 2,18В, open-drain, active-low
sc70/sot23
ADI
M6C
ADM1816-23AKS/ART
супервизор 2,31В, open-drain, active-low
sc70/sot23
ADI
M6C
MMBFU310
n-канальный ВЧ FET: 25В
sot23
ON Semi
M6E
ADM1816-10AKS/ART
супервизор: 2,88В open-drain/active-low
sc70/sot23
ADI
M6G
SMMBF4393
nFET: 30В/50мА Ugs(off)=-3В
sot23
On Semi
M6H
ADM1816-20AKSZ/ARTZ
супервизор: 2. 55В open-drain/active-low
sc70/sot23
ADI
RoHS
M6H
MMBD354
два смесительных диода ОК: 7В/10мА
sot23
LGE | ON Semi
M6J
ADM803MAKSZ
супервизор: 4,38В open-drain/active-low
sc70
ADI
RoHS
M6K
ADM1816-5AKS/ART
супервизор: 3,06В open-drain/active-low
sc70/sot23
ADI
M6L
ADM803LAKSZ
супервизор: 4,63В open-drain/active-low
sc70
ADI
RoHS
M6M
ADM803RAKSZ
супервизор: 2,63В open-drain/active-low
sc70
ADI
RoHS
M6N
ADM803ZAKSZ
супервизор: 2,32В open-drain/active-low
sc70
ADI
RoHS
M6P
ADM809JAKSZ/JARTZ
супервизор: 4,00В push-pull/active-low
sc70/sot23
ADI
RoHS
M6P
BSR58
n-канальный FET: 40В/50мА
sot23
NXP
M6R
ADM809LAKSZ
супервизор: 4,63В push-pull/active-low
sc70
ADI
RoHS
M6S
ADM810MAKSZ/MARTZ
супервизор: 4,38В push-pull/active-high
sc70/sot23
ADI
RoHS
M6T
ADM810SAKSZ/SARTZ
супервизор: 2,93В push-pull/active-high
sc70/sot23
ADI
RoHS
M6U
ADM810ZAKSZ/ZARTZ
супервизор: 2,32В push-pull/active-high
sc70/sot23
ADI
RoHS
M6V
ADM810JAKSZ/JARTZ
супервизор: 4,00В push-pull/active-high
sc70/sot23
ADI
RoHS
M6W
ADM810LAKSZ/LARTZ
супервизор: 4,63В push-pull/active-high
sc70/sot23
ADI
RoHS
M6X
ADM1813-5AKSZ/ARTZ
супервизор: 4,62В open-drain/active-low
sc70/sot23
ADI
RoHS
M6Y
ADM1813-10AKSZ/ARTZ
супервизор: 4,35В open-drain/active-low
sc70/sot23
ADI
RoHS
M6Z
ADM1811-5AKSZ/ARTZ
супервизор: 4,62В push-pull/active-low
sc70/sot23
ADI
RoHS
МАЛОМОЩНЫЕ УСИЛИТЕЛИ
Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030, потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 — умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему — LM1875, 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.
Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875, плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа — все компоненты к тому времени имелись в наличии.