Структурная схема
Конденсатор С1 обеспечивает положительную обратную связь между выходом второго и входом первого инвертора необходимую для возбуждения генератора.
Резистор R1 обеспечивает необходимое смещение по постоянному току, а также позволяет осуществлять небольшую отрицательную обратную связь на частоте генератора.
В результате преобладания положительной обратной связи над отрицательной на выходе генератора получается напряжение прямоугольной формы.
Изменение частоты генератора в широких пределах производится подбором емкости СІ и сопротивления резистора R1. Генерируемая частота равна fген = 1/(С1 * R1). С понижением питания эта частота уменьшается. По аналогичной схеме собирается и НЧ генератор подбором соответствующим образом С1 и R1.
Рис. 1. Структурная схема генератора на логической микросхеме.
Схема гератора прямоугольных импульсов на К155ЛА3.
Очень легко собирается на К155ЛА3 генератор прямоугольных импульсов. Для этого можно использовать любые два ее
элемента. Схема может выглядеть вот так.
Импульсы снимаются между 6 и 7(минус питания) выводами микросхемы.
Для этого генератора частоту(f) в герцах можно расчитать по формуле f= 1/2(R1 *C1).
Значения подставляются в Омах и Фарадах.
Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт
Главная особенность этой схемы радиожука так это то что в ней в качестве генератора несущей частоты применена цифровая микросхема К155ЛА3.
Схема состоит из простого микрофонного усилителя на транзисторе КТ135 (можно в принципе любой импортный с похожими параметрами. Да, кстати, у нас на сайте программа справочник имеется по транзисторам! Причем совершенно бесплатная! Если кому интересно, то подробности ), далее идет модулятор-генератор собранный по схеме логического мультивибратора , ну, и сама антенна- кусок провода скрученный в спираль для компактности.
Интересная особенность данной схемы: в модуляторе (мультивибраторе на логической микросхеме) отсутствует частотозадающий конденсатор. Вся особенность в том что элементы микросхемы имеют свою собственную задержку срабатывания которая и является частотозадающей. При введении конденсатора мы потеряем максимальную частоту генерации (а при напряжении питания 5V она будет порядка 100 мГц).Однако здесь есть интересный минус: по мере разряда батареи частота модулятора будет снижаться: расплата, так сказать, за простоту.Но зато есть и существенный «плюс»- в схеме нет ни одной катушки!
Дальность работы передатчика может быть по-разному, но по отзывам до 50 метров он работает стабильно.Рабочая частота в районе 88…100 мГц, так что подойдет любое радиоприемное устройство работающее в FM диапазоне- китайский радиоприемник, автомагнитола, мобильный телефон и даже китайский радиосканер.
Напоследок: рассуждая логически, для компактности вместо микросхемы К155ЛА3 можно было-бы установить микросхему К133ЛА3 в SMD корпусе, но какой будет результат сказать сложно пока не попробуешь… Так что если есть желающие по-экспериментировать- можете сообщить об этом у нас на ФОРУМЕ , будет интересно узнать что из этого вышло…
Микросхема К155ЛА3 является, по сути, базовым элементом 155-ой серии интегральных микросхем. Внешне по исполнению она выполнена в 14 выводном DIP корпусе, на внешней стороне которого выполнена маркировка и ключ, позволяющий определить начало нумерации выводов (при виде сверху — от точки и против часовой стрелки).
В функциональной структуре микросхемы К155ЛА3 имеется 4 самостоятельных логических элементов . Одно лишь их объединяет, а это линии питания (общий вывод — 7, вывод 14 – положительный полюс питания) Как правило, контакты питания микросхем не изображаются на принципиальных схемах.
Каждый отдельный 2И-НЕ элемент микросхемы К155ЛА3 на схеме обозначают DD1.1, DD1.2, DD1.3, DD1.4. По правую сторону элементов находятся выходы, по левую сторону входы. Аналогом отечественной микросхемы К155ЛА3 является зарубежная микросхема SN7400, а все серия К155 аналогична зарубежной SN74.
Порядок сборки схемы.
О деталях приставки. Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами
со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные
– СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков.
При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом
ПЭВ-1 0,1-0,15 по 150-300 витков каждая.
Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки,
минимум — 2А. Если количество ламп на каждый канал увеличить — соответственно возрастет
потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный
на рабочий ток минимум — 250 мА(а лучше — больше).
Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность,
подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, — собирают
активный фильтр. Далее — проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем — реально работающий канал.
Подобным образом необходимо собрать и отстроить все три канала.
Подобное занудство гарантирует безусловную работоспособность устройства после «чистовой» сборки на
монтажной плате, если работа проведена без ошибок и с применением «испытанных» деталей.
Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать
более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить.
Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом — поможет избавиться от навесных проводов-перемычек.
Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт
Микросхема К155ЛА3 является, по сути, базовым элементом 155-ой серии интегральных микросхем. Внешне по исполнению она выполнена в 14 выводном DIP корпусе, на внешней стороне которого выполнена маркировка и ключ, позволяющий определить начало нумерации выводов (при виде сверху — от точки и против часовой стрелки).
В функциональной структуре микросхемы К155ЛА3 имеется 4 самостоятельных логических элементов . Одно лишь их объединяет, а это линии питания (общий вывод — 7, вывод 14 – положительный полюс питания) Как правило, контакты питания микросхем не изображаются на принципиальных схемах.
Каждый отдельный 2И-НЕ элемент микросхемы К155ЛА3 на схеме обозначают DD1.1, DD1.2, DD1.3, DD1.4. По правую сторону элементов находятся выходы, по левую сторону входы. Аналогом отечественной микросхемы К155ЛА3 является зарубежная микросхема SN7400, а все серия К155 аналогична зарубежной SN74.
Применение K155ла1
Продукт K155ла1 является уникальным и широко используется в различных отраслях промышленности. Главным образом, он используется в процессе переработки драгоценных металлов. Благодаря своим высоким техническим характеристикам и надежности, K155ла1 стал неотъемлемой частью процесса экстракции и очистки золота, серебра и других драгоценных металлов.
К155ла1 особенно эффективен при обработке золотоносных руд. Он позволяет максимально эффективно извлекать золото из руды и минимизировать потери. Благодаря своей высокой выдаче и точности, этот продукт способствует увеличению производительности и экономии ресурсов в процессе переработки драгоценных металлов.
К155ла1 также находит применение в производстве электроники. Он используется в процессе изготовления и тестирования различных электронных устройств, таких как мобильные телефоны, компьютеры, телевизоры и т.д. Благодаря высоким техническим характеристикам и надежности, K155ла1 позволяет создавать электронику высокого уровня, обеспечивая стабильную и надежную работу устройств.
К155ла1 также находит применение в производстве ювелирных изделий. Благодаря своей высокой чистоте и эстетичности, этот продукт позволяет создавать уникальные и долговечные украшения. K155ла1 используется для создания различных элементов ювелирных изделий, таких как кольца, цепочки, браслеты и другие, которые становятся настоящими произведениями искусства и привлекают восхищение своей красотой и изысканностью.
ИНФОРМАЦИОННОЕ ПРИЛОЖЕНИЕ 5
СПРАВОЧНЫЕ ДАННЫЕ
1. Зависимости UOH,UOL,IOS,
IIL,IIH,tPHL,tPLH= f
(t °С),tPHL,tPLH =
f (С∑H) для микросхем К155ЛА2 приведены на черт. 25
— 27, 29
— 34.
2. Зависимости UOH,UOL, Ios,
IIL,IIH, tPHL, tPLH = f (t
°С)tPHL, tPLH= f (С∑H), ICCL,
ICCHдля микросхем
К155ЛА3 приведены на черт. 25
— 27, 29
— 36.
3. Зависимости UOH, UOL, Ios, Iss=
F (f),tpHL, tPLH =
f (t °C)tpHL, tPLH=f
(C∑H)для микросхем К155ТМ2 приведены на черт. 25
— 28, 37
— 40.
4. Ожидаемая интенсивность отказов при
эксплуатации в ЭВМ 1 ∙ 10-7 1/ч.
5. Типовое значение тактовой частоты для
микросхем К155ТМ2 20 МГц.
6. Типовые значения динамических
параметров:
время задержки распространения сигнала при включении tPHL, нc:
К155ЛА2 11;
К155ЛА3 7;
К155ТМ2 20;
время задержки распространения сигнала при выключении tPLH, нc:
К155ЛА2 13;
К155ЛА3 12;
К155ТМ2 15.
График зависимости UOH = f (t °C)для микросхем типов К155ЛА2, К155ЛА3,
К155ТМ2
Uсс = 5,25В; UIL
= 0,40 В; N = 10
Черт. 28
График зависимости UOL= f (t °C)для микросхем типов
К155ЛА2, К155ЛА3, К155ТМ2
Uсс= 5,25В; UIH= 2,40 В; N = 10
Черт. 29
График зависимости IOSf
(t °C) для микросхем типов
К155ЛА2, К155ЛА3, К155ТМ2 при Ucc
= 5,25
Черт. 30
График зависимости ICC=
F (f)для микросхем
типа К155ТМ2 при Uсс
= 5,25
Черт. 31
График зависимости IIL
= f (t °C)для микросхем типов
К155ЛА2, К155ЛА3
Ucc= 5,25 В; UIL = 0,40 В
Черт. 32
График зависимости IIH= f (t °C)для микросхем типов
К155ЛА2, К155ЛА3
Uсс = 5,25 В; UIH= 2,40 В
Черт. 33
График зависимости tPHL
= f (t °C)для
микросхем типов К155ЛА2, К155ЛА3 при Ucc= 5,0 В, С∑H = 15 пФ, N = 10
Черт. 34
График
зависимости tPLH=
f (t °C)для микросхем типов К155ЛА2, К155ЛА3 при Uсс = 5,0 В, С∑H = 15 пФ, N = 10
Черт.
35
График
зависимости tPHL= f (С∑H)
для микросхем типов К155ЛА2, К155ЛА3 при UCC= 5,0 В, N =
10, t = 293 К (20 °C)
Черт. 36
График зависимости tPLH= f
(C∑H)для микросхем типов К155ЛА2, К155ЛА3 при Uсс=
5,0 В, N =10,t
= 293 K
(20 °C)
Черт. 37
График зависимости ICCL
= f (t °C)для
микросхем типа К155ЛА3 при Uсс= 5,25 В
Черт. 38
График
зависимости ICCL = f
(t °C)для микросхем типа К155ЛА3 при Ucc= 5,25 В
Черт. 39
График зависимости tPHL
= f (t °C)для
микросхем типа К155ТМ2 при
Uсс=
5,0 В, N =10, C∑H = 15 пФ
Черт. 40
График зависимости tPLH=
f (t °C)для микросхем
типа К155ТМ2 при Uсс
= 5,0 В, N = 10, С∑H
= 15 пФ
Черт. 41
График зависимости tPHL = f
(С∑H)для микросхем типа К155ТМ2 при Ucc=
5,0В,
N = 10, t
= 293 K
(20 °C)
Черт. 42
График зависимости tPLH= f
(С∑H)для микросхем типа К155ТМ2 при UCC = 5,0 В, N = 10, t
= 293 К (20 °С)
Черт. 43
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. Автор — делегация СССР в Постоянной
Комиссии по радиотехнической и электронной промышленности.
2. Тема — 18.820.01-74.
3. Стандарт СЭВ утвержден на 41-м заседании
ПКС.
4. Сроки начала применения стандарта СЭВ:
Страны |
Срок начала применения стандарта СЭВ в |
Срок начала применения стандарта СЭВ в |
НРБ |
Январь 1979 г. |
Январь 1981 г. |
ВНР |
Январь 1980 г. |
— |
ГДР |
||
Республика Куба |
||
МНР |
||
ПНР |
Январь 1979 г. |
Январь 1979 г. |
СРР |
Июль 1979 г. |
— |
СССР |
Январь 1978 г. |
Июль 1979 г. |
ЧССР |
— |
— |
5. Срок первой проверки — 1983 г.,
периодичность проверки — 5 лет.
1. Общие положения. 1 2. Технические требования. 1 2.1. Требования к конструкции. 1 2.2. Требования к электрическим параметрам и режимам.. 2 2.3. Требования к устойчивости при механических 2.4. Требования к устойчивости при климатических 2.5. Дополнительные требования. 4 2.6. Требования к надежности. 5 2.7. Требования к маркировке. 5 2.8. Требования к упаковке. 5 3. Правила приемки. 5 4. Методы испытаний. 7 5. Транспортирование и хранение. 35 6. Указания по эксплуатации. 36 Информационное приложение 1. 37 Информационное приложение 2. 37 Информационное приложение 3. 38 Информационное приложение 4. 39 Информационное приложение 5. 40 |
Простой металлоискатель
Металлоискатель, схема которого приведена на рисунке, можно собрать всего за несколько минут. Он состоит из двух практически идентичных LC-генераторов, выполненных на элементах DD1.1-DD1.4, детектора по схеме удвоения выпрямленного напряжения на диодах VD1. VD2 и высокоомных (2 кОм) головных телефонов BF1 изменение тональности звучания которых и свидетельствует о наличии под катушкой-антенной металлического предмета.
Генератор, собранный на элементах DD1.1 и DD1.2, само возбуждается на частоте резонанса последовательного колебательного контура L1C1, настроенного на частоту 465 кГц (использованы элементы фильтра ПЧ супергетеродинного приемника). Частота второго генератора (DD1.3, DD1.4) определяется индуктивностью катушки-антенны 12 (30 витков провода ПЭЛ 0,4 на оправке диаметром 200 мм) и емкостью конденсатора переменной емкости С2. позволяющего перед поиском настроить металлоискатель на обнаружение предметов определенной массы.
Биения, возникшие в результате смешения колебаний обоих генераторов, детектируются диодами VD1, VD2. фильтруются конденсатором С5 и поступают на головные телефоны BF1.
Все устройство собрано на небольшой печатной плате, что позволяет при питании от плоской батареи для карманного фонаря сделать его очень компактным и удобным в обращении
Janeczek A Prosty wykrywacz melali. — Radioelektromk, 1984, № 9 стр. 5.
Примечание редакции. При повторении металлоискателя можно использовать микросхему К155ЛA3, любые высокочастотные германиевые диоды н КПЕ от радиоприемника «Альпинист».
Эта же схема более подробно рассмотрена в сборнике Адаменко М.В. «Металлоискатели» М.2006 (Скачать). Далее статья из этой книги
Самая простая (и популярная) схема «цветомузыки» на тиристорах КУ202Н.
Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах. Тридцать лет назад я впервые
увидел вблизи полноценную, работающую «светомузыку». Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема.
Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно,
красный канал низких частот устойчиво моргает в ритм с ударными, средний — зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное
тонкое — звенящее и пищащее.
Недостаток один —
необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти «на полную» врубать свою «Электронику»
для того, что бы добиться достаточно устойчивой работы устройства.
В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс.
Например, с 220 до 12 вольт. Только подключать его нужно наоборот — низковольтной обмоткой на вход усилителя.
Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.
Почему К155ла3 так важен для драгоценных металлов?
К155ла3 — это важный материал, который используется для обработки и содержания драгоценных металлов. Он обладает рядом особенностей и преимуществ, которые делают его незаменимым в данной области.
Во-первых, К155ла3 обладает высокой химической стабильностью. Это означает, что он не реагирует с драгоценными металлами и не вызывает их окисления или коррозии. Таким образом, он позволяет сохранить их первоначальный блеск и качество на долгое время.
Во-вторых, К155ла3 обладает высокой теплопроводностью. Это позволяет эффективно контролировать температуру при обработке драгоценных металлов. Он равномерно распределяет тепло, предотвращая его неравномерное распределение и потерю качества изделий.
Кроме того, К155ла3 имеет низкую электропроводность. Это положительно сказывается на электромагнитных свойствах драгоценных металлов, что позволяет эффективно контролировать их качество и работу в различных электронных устройствах.
Для удобного хранения и транспортировки драгоценных металлов К155ла3 может быть использован в виде контейнеров и упаковок. Этот материал обладает высокой прочностью и устойчивостью к механическим воздействиям, что обеспечивает безопасность и защиту драгоценных металлов.
В заключение, К155ла3 является неотъемлемым компонентом для обработки и содержания драгоценных металлов. Его уникальные свойства делают его важным инструментом в процессе работы с драгоценными металлами, обеспечивая их сохранность, эффективность и качество.
Устройство управления шаговым электродвигателем
А. ЛОЗОВОЙ, г. Казань
Шаговые электродвигатели незаменимы при конструировании точных устройств позиционирования. Многие из подобных двигателей имеют на статоре по две многополюсные сдвинутые относительно друг друга обмотки, каждая из них — со средним выводом. Последние обычно соединяют с плюсом источника питания, а остальные выводы в определенной последовательности — с минусом.
Когда через одну из половин обмотки течет ток, ее вторая половина обесточена. Устройство, схема которого показана на рисунке, управляет шаговым двигателем, заставляя его ротор вращаться в одну или другую сторону. Каждый из импульсов генератора на элементах микросхемы DD1 поворачивает ротор на один шаг Частоту импульсов (и шагов) изменяют переменным оезистооом R3. Нужную последовательность уровней напряжения, подаваемых на обмотки дви гателя, формирует кол ьцево й двухразрядный счетчик на D-триггерах DD3.1 и DD3.2. С помощью двух элементов «Исключающее ИЛИ» (DD2.2 и DD2.3) при необходимости инвертируют сигналы обратной связи счетчика, изменяя таким образом направления счета и вращения ротора двигателя М1 в зависимости от положения выключателя SA1. Элементы DD2.1 и DD2.4 — буферные.
Непосредственно коммутируют обмотки двигателя транзисторные ключи с открытым коллектором, входящие в состав микросхемы DD4 (использованы лишь четыре из семи имеющихся ключей). Все выходы микросхемы снабжены внутренними защитными диодами, общий катод которых — вывод 9. Таким образом, каждая полуобмотка зашунтирована диодом, устраняющим коммутационные выбросы напряжения.
Мощность электродвигателя М1 ограничена максимальным током через один ключ — 300 мА и суммарной мощностью, рассеиваемой микросхемой DD4, 2 Вт при температуре окружающей среды 25 °С. Микросхему К1109КТ23 можно заменить импортной — ULN2004A.
От редакции. Входные цепи ключей микросхемы К1109КТ23 рассчитаны и на непосредственное подключение к выходам микросхем структуры КМОП. Поэтому микросхемы DD1—DD3 можно заменить функциональными аналогами из серии К561: К155ЛАЗ на К561ЛА7, К155ЛП5 на К561ЛП2, К155ТМ2 на К561ТМ2, учтя различия а назначении их выводов, уменьшив в 500 раз емкость конденсатора С1 и увеличив во столько же раз сопротивление резисторов R2 и R3. После такой замены устройство можно питать от одного источника напряжением 12 В. Цепи питания микросхем следует зашунтировать конденсаторами.
Опыты с микросхемой К155ЛА3
На макетную плату установите микросхему К155ЛА3 к выводам подсоедините питание (7 вывод минус, 14 вывод плюс 5 вольт). Для выполнения замеров лучше применить стрелочный вольтметр, имеющий сопротивление более 10 кОм на вольт. Спросите, почему нужно использовать стрелочный? Потому, что, по движению стрелки, можно определить наличие низкочастотных импульсов.
После подачи напряжения, измерьте напряжение на всех ножках К155ЛА3. При исправной микросхеме напряжение на выходных ножках (3, 6, 8 и 11) должно быть около 0,3 вольт, а на выводах (1, 2, 4, 5, 9, 10, 12, и 13) в районе 1,4 В.
Для исследования функционирования логического элемента 2И-НЕ микросхемы К155ЛА3 возьмем первый элемент. Как было сказано выше, его входом служат выводы 1 и 2, а выходом является 3. Сигналом логической 1 будет служить плюс источника питания через токоограничивающий резистор 1,5 кОм, а логическим 0 будем брать с минуса питания.
Опыт первый (рис.1): Подадим на ножку 2 логический 0 (соединим ее с минусом питания), а на ножку 1 логическую единицу (плюс питания через резистор 1,5 кОм). Замерим напряжение на выходе 3, оно должно быть около 3,5 В (напряжение лог. 1)
Вывод первый
: Если на одном из входов лог.0, а на другом лог.1, то на выходе К155ЛА3 обязательно будет лог.1
Опыт второй (рис.2): Теперь подадим лог.1 на оба входа 1 и 2 и дополнительно к одному из входов (пусть будет 2) подключим перемычку, второй конец которой будет соединен с минусом питания. Подадим питание на схему и замерим напряжение на выходе.
Оно должно быть равно лог.1. Теперь уберем перемычку, и стрелка вольтметра укажет напряжение не более 0,4 вольта, что соответствует уровню лог. 0. Устанавливая и убирая перемычку можно наблюдать как «прыгает» стрелка вольтметра указывая на изменения сигнала на выходе микросхемы К155ЛА3.
Вывод второй:
Сигнал лог. 0 на выходе элемента 2И-НЕ будет только в том случае, если на обоих его входах будет уровень лог.1
Следует отметить, что неподключенные входы элемента 2И-НЕ («висят в воздухе»), приводит к появлению низкого логического уровня на входе К155ЛА3.
Опыт третий (рис.3): Если соединить оба входа 1 и 2, то из элемента 2И-НЕ получится логический элемент НЕ (инвертор). Подавая на вход лог.0 на выходе будет лог.1 и наоборот.
Схема двухтонального звонка на микросхемах собран на двух микросхемах и одном транзисторе.
Исследование работы мультивибратора на К155ЛА3
Для изучения выходных сигналов желательно использовать логический пробник или стрелочный вольтметр. При тех номиналах, которые указаны на схеме, частота импульсов составит около 30 раз в минуту или примерно 0,5 Гц.
Следовательно, стрелка вольтметра, подсоединенного, к примеру, к выходу DD1.2 К155ЛА3, будет двигаться от 0 и почти до 5 вольт. Если подсоединить вольтметр к выходу DD1.1 К155ЛА3 можно увидеть точно такую же картину. Поэтому данный вид мультивибратора назван симметричным.
Теперь если к каждому конденсатору параллельно подключить еще по одному такому же, то можно заметить, что частота колебаний стрелка вольтметра снизилась примерно в 2 раза. Если теперь заменить первоначальные конденсаторы конденсаторами по 200 мкф, то сразу будет заметно увеличение частоты колебаний.
А что выйдет, если поменять емкость всего лишь одного конденсатора? К примеру, один конденсатор заменим на 100 мкф, а другой оставим как есть 500 мкф. Частота заметно возрастет, но еще плюс ко всему изменится отношение паузы и импульсов. Уменьшив емкость до 1…5 мкф, схема будет вырабатывать звуковую частоту в районе 500…1000 Гц.
Если один из постоянных резисторов убрать и на его место поставить переменный, то изменяя его сопротивление можно в небольшом диапазоне изменять частоту работы мультивибратора.
Но, бывает, что мультивибратор функционирует нестабильно или вообще не запускается. А все дело в том, что эмиттерный вход микросхем К155ЛА3 достаточно зависим от сопротивления резисторов, находящихся в его цепи. Эта специфика эмиттерного входа микросхемы К155ЛА3 состоит в следующем. Резистор на входе включен как составная часть одного из плеч мультивибратора. Из-за тока эмиттера на данном резисторе появляется напряжение, которое запирает транзистор.
Если же сопротивление данного резистора будет в диапазоне 2…2,5 кОм, то падение напряжения на нем окажется значительным, и это приведет к тому, что транзистор элементарно перестанет обрабатывать входной сигнал. И наоборот, если установить сопротивление в диапазоне 500…700 Ом, то транзистор окажется постоянно в открытом состоянии.
Цифровой мультиметр AN8009
Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…
Подробнее
В связи с этим, сопротивление данных резисторов следует подбирать в диапазоне 800…2200 Ом. Только так возможно достичь стабильной работы мультивибратора на К155ЛА3, построенный по данной схеме. Так же на работу данного мультивибратора действуют такие моменты, как нестабильность питания, температура. От того мультивибратор на К155ЛА3, построенный по такой схеме фактически используется крайне редко.
Влияние содержания драгметаллов на работу транзистора К155ЛА3
Содержание драгметаллов в транзисторе К155ЛА3 имеет важное значение для его работы. Драгметаллы, такие как золото, палладий и платина, используются для создания контактов, которые обеспечивают электрическую связь между различными слоями полупроводникового материала
Это позволяет эффективно передавать сигналы и управлять током внутри транзистора.
Содержание драгметаллов в транзисторе К155ЛА3 должно быть строго контролируемым, так как небольшие отклонения могут негативно сказаться на его работе. Если содержание драгметаллов слишком низкое, то возникает риск недостаточной электрической связи между контактами, что может привести к неправильной работе транзистора.
С другой стороны, если содержание драгметаллов слишком высокое, это может привести к ухудшению электрической контактности из-за образования оксидных пленок на поверхности контактов. Это может привести к увеличению электрического сопротивления и ухудшению передачи сигналов и управления током.
Поэтому, оптимальное содержание драгметаллов в транзисторе К155ЛА3 является критически важным для его нормальной работы. Тщательный контроль и высокое качество материалов с драгметаллами гарантируют эффективную и надежную работу данного транзистора.
К155ла3: важные детали для драгоценных металлов
К155ла3 – это сплав, который широко используется в процессе производства и обработки драгоценных металлов. Он состоит из различных компонентов, каждый из которых играет важную роль в обеспечении высоких характеристик и свойств данного сплава.
Одной из ключевых особенностей К155ла3 является его высокая стойкость к коррозии. Благодаря особому составу этого сплава, драгоценные металлы, такие как золото, серебро и платина, остаются защищенными от окисления и разрушения. Это обеспечивает долговечность и сохранность изделий, изготовленных из этих материалов.
Еще одной важной деталью К155ла3 является его устойчивость к высоким температурам. Это позволяет использовать сплав при проведении процессов плавки и легирования драгоценных металлов
Благодаря этому, производители могут получать изделия с предопределенными характеристиками и свойствами, а также осуществлять точное контролирование и управление процессами обработки.
К155ла3 также отличается высокой прочностью и твердостью, что делает его идеальным материалом для создания драгоценных украшений. Этот сплав позволяет изготавливать сложные и изысканные детали, сохраняя при этом стабильность формы и не теряя своих качеств даже при длительной эксплуатации изделий.
Выводя идеальные характеристики драгоценных металлов на новый уровень, К155ла3 становится незаменимым материалом для ювелиров, огранщиков и производителей изделий из драгоценных металлов. Этот сплав обеспечивает надежность, долговечность и совершенство в каждом шаге обработки и производства.