Как проверить мультиметром полевой транзистор
Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления. Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства.
Будет интересно Как сделать мигающий светодиод?
Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору. Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.
Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее. Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:
- Необходимо снять с транзистора статическое электричество.
- Переключить измерительный прибор в режим проверки полупроводников.
- Подключить красный щуп к разъему прибора «+», а черный «-».
- Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
- Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
- Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
- Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
- Изменив полярность проводов, показания напряжения должны остаться неизменными.
- Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.
Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время.
Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения. Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального.
Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную. Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра.
Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.
Характеристики
Технические свойства этого биполярника на удивление хороши, даже по сегодняшним меркам. К сожалению, в даташит современного производителя КТ315, представлена только основная информация. В них не найти графиков, отражающих поведение устройство в различных условиях эксплуатации, которыми наполнены современные технические описания на другие подобные устройства от зарубежных производителей.
Максимальные характеристики
Максимальные значения допустимых электрических режимов эксплуатации КТ315 до сих пор впечатляют начинающих радиолюбителей. Например, максимальный ток коллектора может достигать уровня в 100 мА, а рабочая частота у некоторых экземпляров превышает заявленные 250 МГц. Его более дорогие современники из серии КТ2xx/3xx, даже имея металлический корпус, не могли похвастаться такими показателями. КТ315 был долгое время своеобразным техническим лидером, пока ему на смену не пришёл усовершенствованный КТ3102. Рассмотрим максимально допустимые электрические режимы эксплуатации КТ315, в корпусе ТО-92, белорусского ОАО «Интеграл». В конце обозначения таких приборов присутствует цифра «1».
Основные электрические параметры
Будьте внимательны, несмотря на свои достаточно хорошие характеристики, КТ315 не может конкурировать с современными устройствами по некоторым параметрам. Так у современной серии КТ315, как и 50 лет назад, относительно небольшой диапазон рабочих температур от — 45 до + 100°C. А коэффициент шума (КШ) достигает 40 Дб, что уже много для современного устройства, предназначенного для усиления в низкочастотных трактах.
Классификация
Кроме основных параметров, в техническом описании можно найти распределение устройств по группам. Таблица классификации дает представление о параметрах всей серии КТ315. Используя её можно подобрать нужное устройство, путем сравнения основных характеристик всей серии.
Комплементарная пара
У КТ315 имеется комплементарная пара – КТ361. Эти устройства довольно часто применялись вместе, особенно в бестрансформаторных двухтактных схемах. Совместное применение данной пары безусловно вошло в историю российской электроники.
Отечественные и зарубежные аналоги
Прямого аналога транзистора 13001 в номенклатуре отечественных кремниевых триодов нет, но при средних эксплуатационных режимах можно применять кремниевые полупроводниковые приборы структуры N-P-N из таблицы.
При режимах, близких к максимальным, надо внимательно выбирать аналоги так, чтобы параметры позволяли эксплуатировать транзистор в конкретной схеме. Также надо уточнять цоколевку приборов – она может не совпадать с расположением выводов 13001, это может привести к проблемам с установкой на плату (особенно, для исполнения SMD).
Из зарубежных аналогов для замены подойдут такие же высоковольтные, но более мощные кремниевые N-P-N транзисторы:
- (MJE)13002;
- (MJE)13003;
- (MJE)13005;
- (MJE)13007;
- (MJE)13009.
Они отличаются от 13001, большей частью, повышенным током коллектора и увеличенной мощностью, которую может рассеивать полупроводниковый прибор, но также может иметь место различие в корпусе и расположении выводов.
В каждом конкретном случае надо проверять цоколевку. Во многих случаях могут подойти транзисторы LB120, SI622 и т.п., но надо внимательно сравнить специфические характеристики.
Так, у LB120 напряжение коллектор-эмиттер составляет те же 400 вольт, но между базой и эмиттером больше 6 вольт подавать нельзя. Также у него несколько ниже максимальная рассеиваемая мощность – 0,8 Вт против 1 Вт у 13001. Это надо учитывать при принятии решения о замене одного полупроводникового прибора на другой. То же самое относится к более мощным высоковольтным отечественным кремниевым транзисторам структуры N-P-N:
Они заменяют приборы серии 13001 функционально, имеют большую мощность (а иногда и более высокое рабочее напряжение), но расположение выводов и габариты корпуса могут разниться.
Биполярный транзистор 2SC3950 — описание производителя. Основные параметры. Даташиты.
Наименование производителя: 2SC3950
Тип материала: Si
Полярность: NPN
Максимальная рассеиваемая мощность (Pc): 5
W
Макcимально допустимое напряжение коллектор-база (Ucb): 30
V
Макcимально допустимое напряжение коллектор-эмиттер (Uce): 20
V
Макcимально допустимое напряжение эмиттер-база (Ueb): 3
V
Макcимальный постоянный ток коллектора (Ic): 0.5
A
Предельная температура PN-перехода (Tj): 150
°C
Граничная частота коэффициента передачи тока (ft): 2000
MHz
Ёмкость коллекторного перехода (Cc): 6
pf
Статический коэффициент передачи тока (hfe): 30
Корпус транзистора:
2SC3950
Datasheet (PDF)
..1. Size:79K sanyo 2sc3950.pdf
Ordering number:EN2441APNP/NPN Epitaxial Planar Silicon Transistor2SC3950High-Definition CRT DisplayVideo Output ApplicationsApplications Package Dimensions High-definition CRT display video output, wide-bandunit:mmamplifier.2042AFeatures High fT : fT=2.0GHz. Large current capacity : IC=500mA. Micaless type : TO-126 plastic package.B : BaseC
8.1. Size:41K sanyo 2sa1539 2sc3954.pdf
Ordering number:ENN2438BPNP/NPN Epitaxial Planar Silicon Transistors2SA1539/2SC3954High-Definition CRT DisplayVideo Output ApplicationsPackage DimensionsApplications High-definition CRT display video output, wide-bandunit:mmamplifier.2042B[2SA1539/SC3954]8.0Features4.03.31.0 1.0 High fT : fT=500MHz. High breakdown voltage : VCEO=120Vmin.3.0 Sm
8.2. Size:41K sanyo 2sa1536 2sc3951.pdf
Ordering number:ENN2435BPNP/NPN Epitaxial Planar Silicon Transistors2SA1536/2SC3951High-Definition CRT DisplayVideo Output ApplicationsApplications Package Dimensions High definition CRT display video output, wide-bandunit:mmamplifier.2042B[2SA1536/2SC3951]8.0Features4.03.31.0 1.0 High fT : fT=600MHz. High breakdown voltage : VCEO=70Vmin.3.0 Sma
8.3. Size:39K sanyo 2sa1541 2sc3956.pdf
Ordering number:ENN2440BPNP/NPN Epitaxial Planar Silicon Transistors2SA1541/2SC3956High-Definition CRT DisplayVideo Output ApplicationsApplications Package Dimensions High-definition CRT display video output, wide-bandunit:mmamplifier.2042B[2SA1541/2SC3956]8.0Features4.03.31.0 1.0 High gain-bandwidth product : fT=300MHz. High breakdown voltage : VCEO=2
8.4. Size:41K sanyo 2sa1537 2sc3952.pdf
Ordering number:ENN2436CPNP/NPN Epitaxial Planar Silicon Transistors2SA1537/2SC3952High-Definition CRT DisplayVideo Output ApplicationsApplications Package Dimensions High-definition CRT display video output, wide-bandunit:mmamplifier.2042B[2SA1537/2SC3952]8.0Features4.03.31.0 1.0 High fT : fT=700MHz. High breakdown voltage : VCEO=70Vmin.3.0 Sma
8.5. Size:40K sanyo 2sa1538 2sc3953.pdf
Ordering number:ENN2437BPNP/NPN Epitaxial Planar Silicon Transistors2SA1538/2SC3953High-Definition CRT DisplayVideo Output ApplicationsPackage DimensionsApplications High-definition CRT display video output, wide-bandunit:mmamplifier.2042B[2SA1538/2SC3953]8.0Features4.03.31.0 1.0 High fT : fT=400MHz. High breakdown voltage : VCEO=120Vmin.3.0 S
8.6. Size:40K sanyo 2sa1540 2sc3955.pdf
Ordering number:ENN2439BPNP/NPN Epitaxial Planar Silicon Transistors2SA1540/2SC3955High-Definition CRT DisplayVideo Output ApplicationsApplications Package Dimensions High-definition CRT display video output, wide-bandunit:mmamplifier.2042B[2SA1540/2SC3955]Features 8.04.03.31.0 1.0 High gain-bandwidth product : fT=300MHz. High breakdown voltage : VCEO=20
8.7. Size:33K hitachi 2sc3957.pdf
2SC3957Silicon NPN Epitaxial, DarlingtonApplicationHigh gain amplifierOutlineMPAK-4213311. Collector2. Emitter43. Base4. NC22SC3957Absolute Maximum Ratings (Ta = 25C)Item Symbol Ratings UnitCollector to base voltage VCBO 40 VCollector to emitter voltage VCEO 30 VEmitter to base voltage VEBO 10 VCollector current IC 300 mACollector peak current
Другие транзисторы… 2SC3944
, 2SC3944A
, 2SC3945
, 2SC3946
, 2SC3947
, 2SC3948
, 2SC3949
, 2SC395
, 2SC4793
, 2SC3951
, 2SC3952
, 2SC3953
, 2SC3953C
, 2SC3953D
, 2SC3954
, 2SC3955
, 2SC3956
.
Графические иллюстрации характеристик
Рис. 1. Внешняя характеристика транзистора в схеме с общим эмиттером. Зависимость коллекторной нагрузки IC от напряжения коллектор-эмиттер UCE при различных токах (управления) базы IB.
Рис. 2. Зависимость статического коэффициента усиления по току от коллекторной нагрузки IC.
Зависимость снята при импульсном напряжении коллектор-эмиттер UCE = 5 В.
Рис. 3. Зависимости напряжений насыщения коллектор-эмиттер UCE(sat) и эмиттер-база UBE(sat) от величины коллекторной нагрузки IC.
Зависимость снята при соотношении амплитуд импульсов токов коллектора и базы IC/IB = 5.
Рис. 4. Снижение предельной токовой нагрузки IC в области безопасной работы транзистора при увеличении температуры корпуса прибора TC.
Кривая «Dissipation Limited» — снижение токовой нагрузки в результате общего перегрева п/п структуры.
Кривая «S/b Limited» — снижение токовой нагрузки для исключения вторичного пробоя п/п структуры локально, в местах повышенной плотности тока.
Определение теплового режима транзистора во многом сводится к определению рассеиваемой мощности и соотнесению её с областью безопасной работы транзистора (ОБР). Для транзистора, работающего в ключевом режиме, приходится учитывать потери на коммутационных интервалах, а также ряд особенностей, определяемых реактивными свойствами коллекторной цепи и источника питания.
Рис. 5. Область безопасной работы транзистора, определена при температуре среды Ta = 25°С при нагрузке транзистора одиночными импульсами (Single Pulse) различной длительности: PW = 10 мкс; 50 мкс; 100 мс; 300 мкс; 1,0 мс; 10 мс; 100 мс.
Выделяются 4 участка ограничивающих линий предельного тока коллектора:
- горизонтальный – предельный ток транзистора, определяющий устойчивость паяных соединений. При возрастании температуры корпуса вводится поправка согласно графику Рис. 4;
- участок «Dissipation Limited» – предельный ток, ограничивающий общий нагрев п/п структуры;
- участок «S/b Limited» — ограничение тока исходя из недопущения вторичного пробоя п/п структуры;
- вертикальный участок – предельное напряжение коллектор-эмиттер, не приводящее к лавинному пробою п/п структуры.
Характеристики ОБР по Рис. 5 подходят для анализа безопасной работы транзистора при резистивном или емкостном характере нагрузки, а также при любой нагрузке на интервале проводимости (ton). См. диаграмму тока коллектора в импульсном режиме выше.
В схеме с индуктивной нагрузкой на коммутационном интервале (tstg + tf), при восстановлении непроводящего состояния, возникающие на транзисторе пиковые перенапряжения могут превышать критические значения и вызвать пробой п/п структуры. Для уменьшения перенапряжений вводятся ограничители напряжения: снабберные RC-цепи, активные ограничители и т. п. Для уменьшения потерь (уменьшения длительности коммутационного интервала) в цепь управления (базы) транзистора вводится отрицательное напряжение смещения.
Увеличение напряжений при вводе отрицательного смещения и ограничение коллекторного тока отражаются на конфигурации ОБР. Такая ОБР является неотъемлемой характеристикой работы транзистора в переключающем режиме с индуктивной нагрузкой.
Рис. 6. Область безопасной работы с обратным смещением. Характеристика снята при условии Tc ≤ 100°C.
Увеличение UCEX(sus) при значительном ограничении тока коллектора – результат ввода ограничителей коммутационных перенапряжений до уровня 450 В.
Условиями безопасной (корректной) работы транзистора в ключевом режиме является выполнение следующих условий:
- непревышение температурных ограничений по структуре в целом;
- токи и напряжения на интервале включения (ton) не превышают ограничений ОБР;
- токи и напряжения на интервале выключения (tstg + tf) не превышают ограничений ОБР с обратным смещением.
Проверка КТ815
Не всегда покупаемые элементы оказываются в рабочем состоянии. Пусть бракованные элементы попадаются не так часто, но любой радиолюбитель или просто покупатель обязан знать, как проверить такой прибор.
Во-первых, проверить работоспособность КТ815 можно специальным пробником, но рассмотрим проверку обычным мультиметром, так как предыдущий прибор есть далеко не у всех.
Для проверки при помощи мультиметра, прибор нужно перевести в режим прозвонки. Сначала прикладываем отрицательный щуп к базе, а положительный к коллектору. На дисплее должно отобразиться значение от 500 до 800 мв. Затем меняем щупы, поставив на базу положительный, а на эмиттер отрицательный. Значения должны примерно равны прошлым.
Затем нужно проверить обратное падение напряжение. Для этого поставим сначала отрицательный щуп на базу, а положительный на коллектор. Должны получится единица. В случае с замером на базе и эмиттере, произойдёт то же самое.
Аналоги
Для замены могут подойти транзисторы кремниевые, со струкрурой NPN, эпитаксиально-планарные, предназначенные для применения в схемах усилителей низкой частоты, дифференциальных и операционных усилителей.
Отечественное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130 | 80 | 3,5 | — | ≤ 0,25 | SOT-23 |
КТ3102А | 0,25 | 50 | 50 | 5 | 0,1 | — | 100…200 | 150 | ≤ 6 | 10 | — | ТО-92, ТО-18 |
КТ3102Б | 0,25 | 50 | 50 | 5 | 0,1 | — | 200…500 | 150 | ≤ 6 | 10 | — | ТО-92, ТО-18 |
КТ602А/Б | 0,85 | 120 | 100 | 5 | 0,075 | 150 | 20…80 | 150 | ≤ 4 | — | ≤ 3,0 | ТО-126 |
КТ602В/Г | 0,85 | 80 | 70 | 5 | 0,075 | 150 | 15…80 | 150 | ≤ 4 | — | ≤ 3,0 | ТО-126 |
КТ611А/Б | 0,8 | 200 | 180 | 4 | 0,1 | 150 | 10…120 | ≥ 60 | ≤ 5 | — | ≤ 0,8 | ТО-126 |
КТ611В/Г | 0,8 | 180 | 180 | 4 | 0,1 | 150 | 10…120 | ≥ 60 | ≤ 5 | — | ≤ 0,8 | ТО-126 |
КТ660А | 0,5 | 50 | 45 | 5 | 0,8 | 150 | 110…220 | ≥ 200 | ≤ 10 | — | ≤ 0,5 | ТО-92 |
Зарубежное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус | Маркировка |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2SC1815 | 0,4 | 60 | 50 | 5 | 0,15 | 150 | 70…700 | 80 | ≤ 3,5 | 1…10 | 0,25 | TO-92 | — |
CSC3114/R | 0,4 | — | 50 | — | 0,15 | — | 100 | 100 | ≤ 3,5 | ≤ 100 | ≤ 0,25 | TO-92 | — |
CSC3114S | 0,4 | — | 50 | — | 0,15 | — | 140 | 100 | — | — | — | TO-92 | — |
CSC3114V | 0,4 | — | 50 | — | 0,15 | — | 280 | 100 | — | — | — | TO-92 | — |
CSC3199 | 0,4 | — | 50 | — | 0,15 | — | 70…700 | 80 | — | — | — | TO-92 | — |
CSC3331/R/S/T | 0,5 | — | 50 | — | 0,2 | — | 70 | 200 | — | — | — | TO-92 | — |
CSC3331TU/U/V | 0,5 | — | 50 | — | 0,2 | — | 70 | 200 | — | — | — | TO-92 | — |
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130 | 80 | — | — | 0,25 | SOT-23 | HF |
2N5551SC | 0,35 | 180 | 160 | 6 | 0,6 | 150 | 150 | 100 | ≤ 6 | ≤ 8 | ≤ 0,5 | SOT-23 | ZFC |
2PD601BRL | 0,25 | 60 | 50 | 6 | 0,2 | 150 | 210 | 100 | ≤ 3 | — | ≤ 0,25 | SOT-23 | ML٭ |
2PD601BSL | 0,25 | 60 | 50 | 6 | 0,2 | 150 | 290 | 100 | ≤ 3 | — | ≤ 0,25 | SOT-23 | MM٭ |
2PD602ASL | 0,25 | 60 | 50 | 5 | 0,5 | 150 | 170 | 180 | ≤ 15 | — | ≤ 0,6 | SOT-23 | SF |
2SC2412-R | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 180 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BR |
2SC2412-S | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 270 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BS |
2SC945LT1 | 0,23 | 60 | 50 | 5 | 0,15 | 150 | 200 | 150 | ≤ 3,5 | — | ≤ 0,3 | SOT-23 | L6 |
2STR1160 | 0,5 | 60 | 50 | 5 | 1 | 150 | 250 | 150 | ≤ 3,5 | — | ≤ 0,43 | SOT-23 | 160 |
BCV47 | 0,36 | 80 | 60 | 10 | 0,5 | 150 | 10000 | 170 | ≤ 3,5 | — | ≤ 1,0 | SOT-23 | DK, FG, FGp, FGs, FGt, W |
BTC2412N3 | 0,225 | 60 | 50 | 7 | 0,2 | 150 | 180 | 80 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | C4 |
BTD2150N3 | 0,225 | 80 | 50 | 6 | 4 | 150 | 270 | 175 | 14 | — | ≤ 0,32 | SOT-23 | CF |
BTN6427N3 | 0,225 | 100 | 60 | 12 | 0,5 | 150 | 10000 | ≤ 7 | — | ≤ 1,5 | SOT-23 | 1N | |
CMPT3820 | 0,35 | 80 | 60 | 5 | 1 | 150 | 200 | 150 | ≤ 10 | — | ≤ 0,28 | SOT-23 | 38C |
CMPT491E | 0,35 | 80 | 60 | 5 | 1 | 150 | 200 | 150 | ≤ 10 | — | ≤ 0,4 | SOT-23 | C49 |
INC5001AC1 | 0,2 | 80 | 60 | 5 | 1 | 150 | 130 | 240 | ≤ 10 | — | ≤ 0,25 | SOT-23 | XY |
INC5006AC1 | 0,2 | 100 | 50 | 7 | 3 | 150 | 400 | 250 | 13 | — | ≤ 0,2 | SOT-23 | CER |
KMMT619 | 0,35 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 20 | — | ≤ 0,5 | SOT-23 | 619, 619H |
KST6428 | 0,35 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | — | SOT-23 | 1K |
L2SC1623RLT1G | 0,225 | 60 | 50 | 7 | 0,15 | 150 | 180 | 250 | ≤ 3 | — | ≤ 0,3 | SOT-23 | L6 |
L2SC1623SLT1G | 0,225 | 60 | 50 | 7 | 0,15 | 150 | 270 | 250 | ≤ 3 | — | ≤ 0,3 | SOT-23 | L7 |
L2SC2412KRLT1G | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 180 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BR |
L2SC2412KSLT1G | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 270 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | G1F |
L2SC5343RLT1G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 180 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 7R |
L2SC5343SLT1G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 270 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 7S |
LMBT6428LT1G | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | ≤ 0,5 | SOT-23 | 1KM | |
MMBT5343-G/L | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 5343 |
MMBT6428 | 0,3 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,6 | SOT-23 | 1K, 1KM |
MMBT6428L/LT1/LT1G | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,6 | SOT-23 | 1KM |
MMBT945-H/L | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200/130 | 150 | ≤ 3 | — | ≤ 0,3 | SOT-23 | CR |
MMBTA28 | 0,35 | 80 | 80 | 12 | 0,8 | 150 | 10000 | 125 | ≤ 8 | — | ≤ 1,5 | SOT-23 | 3SS K6R |
NXP3875G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | ٭JF |
PBSS4041NT | 0,3 | 60 | 60 | 5 | 3,8 | 150 | 300 | 175 | 17 | — | ≤ 0,3 | SOT-23 | ٭BK |
PBSS4160T | 0,3 | 80 | 60 | 5 | 1 | 150 | 250 | 150 | ≤ 10 | — | ≤ 0,25 | SOT-23 | ٭U5 |
PBSS8110T | 0,3 | 120 | 100 | 5 | 1 | 150 | 150 | 100 | ≤ 7,5 | — | ≤ 0,2 | SOT-23 | ٭U8 |
SSTA28 | 0,2 | 80 | 80 | 12 | 0,3 | 150 | 10000 | 200 | ≤ 8 | — | ≤ 1,5 | SOT-23 SST3 | RAT |
TMPS1654N7 | 0,225 | 80 | 160 | 5 | 0,15 | 150 | 150 | 100 | ≤ 8 | — | ≤ 1,5 | SOT-23 | N7 |
TMPT6428 | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,2 | SOT-23 | 1K |
Примечание: данные в таблицах взяты из даташип компаний-производителей.
Пара Шиклаи и каскодная схема
Другое название составного полупроводникового триода – пара Дарлингтона. Кроме неё существует также пара Шиклаи. Это сходная комбинация диады основных элементов, которая отличается тем, что включает в себя разнотипные транзисторы.
Что до каскодной схемы, то это также вариант составного транзистора, в котором один полупроводниковый триод включается по схеме с ОЭ, а другой по схеме с ОБ. Такое устройство аналогично простому транзистору, который включён в схему с ОЭ, но обладающему более хорошими показателями по частоте, высоким входным сопротивлением и большим линейным диапазоном с меньшими искажениями транслируемого сигнала.
Техническое описание
Транзистор выпускается с гибкими выводами в пластмассовом корпусе КТ-26 (ТО-92), либо в металлостеклянном корпусе КТ-17. Цоколевка выводов кт3102 следующая: 1 – эмиттер, 2 – база, 3 –коллектор.
Характеристики
Все нижеуказанные характеристики для транзисторов в пластиковом корпусе КТ3102 (А-Л) идентичны соответствующим параметрам в металлостекленном (АМ- ЛМ).
- принцип действия – биполярный;
- корпус: пластик для КТ26 (ТО-92); металлостеклянный у КТ-17;
- материал – кремний (Si);
- npn-проводимость (обратная);
предельно допустимые электрические эксплуатационные данные (при температуре окружающей среды от +25 °C):
основные электрические параметры:
- IКБО (ICBO) не более 50 нА (nA), при UКБ макс. (VCB max) = 50 В (V) и IЭ (IE)=0;
- IЭБО (IEBO) не более 10 мкА (µA), при UEБ макс. (VEB max ) = 5 В (V);
- fгр норм.(ftTYP) от 100 до 300 МГц (MHz), при UКб (VCB) = 5 В (V), IЭ (IE)= 10 мА (mA);
- емкость коллекторного перехода СК (СС) 6 пФ (pF) при UКБ (VCB) = 5 В (V), f= 10 МГц (MHz);
- коэффициент шума КШ (Noise Figure) NF от 4 до 10 Дб (dB), при UКЭ(VCE) =5 В (V), IK (Ic) = 0.2 мА (mA);
- cтатический коэффициент усиления по току h21E находится в диапазоне от 100 до 1000, при UКЭ(VCE) =5 В (V), IK (Ic) = 2 мА (mA), f=50 Гц(Hz).
- тепловое сопротивление переход- среда 0,4 °C/мВт (°C/mW);
- Токр от -40 до +85 °C.
При выборе транзистора обратите внимание на дату выпуска и его предельно допустимые напряжения и токи, определите возможность его использования в схеме. Более новые модели имеют преимущества перед старыми, так как производители непрерывно работают над улучшением характеристик в своих продуктах. Не стоит забывать, что у некоторых из них (например КТ3102Г, КТ3102Е) предельные значения по напряжению не превышают 20 В
Ниже приведена классификация КТ3102
Не стоит забывать, что у некоторых из них (например КТ3102Г, КТ3102Е) предельные значения по напряжению не превышают 20 В. Ниже приведена классификация КТ3102.
По мнению радиолюбителей, несмотря на идентичность характеристик заявленных производителем, транзистор в пластиковом корпусе немного уступает металлостеклянному. Так, при работе на предельно допустимых параметрах, пластик расширяется и сжимается, что нередко приводит к отрыву выводов от кристалла. Это основная причина, из за которой стоит подумать о применении устройства в пластиковом корпусе. Кроме того пластик иногда становится не герметичен и вдоль выводов к кристаллу может проникать влага. Считают, что в металлопластиковом корпусе кристалл рассеивает большую мощность. Так же у него будет меньшее тепловое сопротивление, а следовательно устройство будет меньше греться и в свою очередь схема будет работать более стабильней.
Зарубежными аналогами, с похожими техническими характеристиками считаются: BC 174, 2S A2785, BC 182, BC 546, BC 547, BC 548, BC 549. Прототипами для разработки некоторых серий КТ3102 были: BC 307A, BC 308A BC 308B, BC 309B, BC 307B, BC 308C, BC 309C. Из российских аналогов КТ-3102, в качестве замены может подойти КТ 611 или популярный КТ315 с группой Б, Г, Е.
Маркировка
Транзисторы маркируются на боковой стороне корпуса. КТ3102 разных годов выпуска могут встречается с различной маркировкой. До 1995 года производители использовали цветовую и кодовую (буквенно-цифровая и символьно-цветовая) маркировку. Советские транзисторы КТ3102 до 1986 года, изготовленные в корпусе КТ-26, можно узнать по темно-зеленой точке на передней части корпуса. По цвету точки, нанесенной на корпусе сверху, определить принадлежность транзистора конкретной к группе. Дата выпуска при цветовой обозначении могла не указываться.
Маркировать транзистор кт3102 с использованием стандартного метода начали с 1986 года. Согласно кодовой метки он узнаваем по белой фигуре прямоугольного треугольника, размещенного на передней части корпуса (слева сверху), обозначающему его тип (модель). Правее указывается групповая принадлежность, а в нижней части год и месяц даты выпуска. В стандартной кодовой маркировке так же указывался год и месяц выпуска транзистора.
Иногда встречается нестандартные цветовые и кодовые маркировки. Как правило, в них не хватает информации о дате выпуска или групповой принадлежности. Современные производители, уже не используют фигуры в обозначении, а указывают на корпусе полное название типа и группы транзистора. Кроме этого на корпусе можно увидеть знак, указывающий на производителя устройства.
Как уже писалось ранее, транзистор встречается в пластиковом и металлическом корпусе. Устройства с пластиковым корпусом КТ-26 содержат в конце символ “М”. Например КТ3102ВМ это транзистор в пластиковом корпусе КТ-26, а КТ3102В в металлическом КТ-17.
Таблица 2 – Маркировка транзистора КТ315-1 кодовым знаком
Тип транзистора | Маркировочная метка на срезе боковой поверхности корпуса |
Маркировочная метка на торце корпуса |
---|---|---|
KT315A1 | Треугольник зеленого цвета | Точка красного цвета |
KT315Б1 | Треугольник зеленого цвета | Точка желтого цвета |
KT315В1 | Треугольник зеленого цвета | Точка зеленого цвета |
KT315Г1 | Треугольник зеленого цвета | Точка голубого цвета |
KT315Д1 | Треугольник зеленого цвета | Точка синего цвета |
KT315Е1 | Треугольник зеленого цвета | Точка белого цвета |
KT315Ж1 | Треугольник зеленого цвета | Две точки красного цвета |
KT315И1 | Треугольник зеленого цвета | Две точка желтого цвета |
KT315Н1 | Треугольник зеленого цвета | Две точки зеленого цвета |
KT315Р1 | Треугольник зеленого цвета | Две точки голубого цвета |
Указания по применению и эксплуатации транзисторов
Основное назначение транзисторов – работа в усилительных каскадах и других схемах радиоэлектронной аппаратуры. Допускается применение транзисторов, изготовленных в обычном климатическом исполнении в аппаратуре, предназначенной для эксплуатации во всех климатических условиях, при покрытии транзисторов непосредственно в аппаратуре лаками (в 3 – 4 слоя) типа УР-231 по ТУ 6-21-14 или ЭП-730 по ГОСТ 20824 с последующей сушкой. Допустимое значение статического потенциала 500 В. Минимально допустимое расстояние от корпуса до места лужения и пайки (по длине вывода) 1 мм для транзистора КТ315 и 2 мм для транзистора КТ315-1. Число допустимых перепаек выводов при проведении монтажных (сборочных) операций – одна.
Внешние воздействующие факторы
Механические воздействия по группе 2 таблица 1 в ГОСТ 11630, в том числе:
– синусоидальная вибрация;
– диапазон частот 1-2000 Гц;
– амплитуда ускорения 100 м/с 2 (10g);
– линейное ускорение 1000 м/с 2 (100g).
Климатические воздействия – по ГОСТ 11630, в том числе: повышенная рабочая температура среды 100 °С; пониженная рабочая температура среды минус 60 °С; изменение температуры среды от минус 60 до 100 °С. Для транзисторов КТ315-1 изменение температуры среды от минус 45 до 100 °С
Надежность транзисторов
Интенсивность отказов транзисторов в течение наработки более 3×10 -7 1/ч. Наработка транзисторов t н = 50000 часов. 98-процентный срок сохраняемости транзисторов 12 лет. Упаковка должна обеспечивать защиту транзисторов от зарядов статического электричества.
Зарубежные аналоги транзистора КТ315
Зарубежные аналоги транзистора КТ315 приведены в таблице 3.
Биполярный транзистор BD944 — описание производителя. Основные параметры. Даташиты.
Наименование производителя: BD944
Тип материала: Si
Полярность: NPN
Максимальная рассеиваемая мощность (Pc): 40
W
Макcимально допустимое напряжение коллектор-база (Ucb): 22
V
Макcимально допустимое напряжение коллектор-эмиттер (Uce): 22
V
Макcимально допустимое напряжение эмиттер-база (Ueb): 5
V
Макcимальный постоянный ток коллектора (Ic): 5
A
Предельная температура PN-перехода (Tj): 150
°C
Граничная частота коэффициента передачи тока (ft): 3
MHz
Статический коэффициент передачи тока (hfe): 85
Корпус транзистора:
BD944
Datasheet (PDF)
..1. Size:216K inchange semiconductor bd944 bd946 bd948.pdf
isc Silicon PNP Power Transistor BD944/946/948DESCRIPTIONDC Current Gain-: h = 85(Min)@ I = -500mAFE CComplement to Type BD943/945/947Minimum Lot-to-Lot variations for robust deviceperformance and reliable operationAPPLICATIONSDesigned for use in audio output stages and generalpurpose amplifier applications.ABSOLUTE MAXIMUM RATINGS(T =25)aSYMBOL PARAMETER VA
0.1. Size:215K inchange semiconductor bd944f bd946f bd948f.pdf
isc Silicon PNP Power Transistor BD944F/946F/948FDESCRIPTIONDC Current Gain-: h = 85(Min)@ I = -500mAFE CComplement to Type BD943F/945F/947FMinimum Lot-to-Lot variations for robust deviceperformance and reliable operationAPPLICATIONSDesigned for use in audio output stages and generalpurpose amplifier applications.ABSOLUTE MAXIMUM RATINGS(T =25)aSYMBOL PARAME
Другие транзисторы… BD940
, BD940F
, BD941
, BD941F
, BD942
, BD942F
, BD943
, BD943F
, MPSA42
, BD944F
, BD945
, BD945F
, BD946
, BD946F
, BD947
, BD947F
, BD948
.