Содержание драгоценных металлов в 818

Справочник содержания драгметаллов

Диод д814а содержание драгметаллов

You are using an outdated browser. Please upgrade your browser.

  • Килоом.ру
  • Справочник радиодеталей
  • Стабилитроны
  • Д814

Д814 — это серия кремниевых, сплавных стабилитронов средней мощности. В Д814 серию стабилитронов входят стабилитроны: Д814А, Д814Б, Д814В, Д814Г, Д814Д. Основным отличием между стабилитронами данной серии является напряжение стабилизации, которое составляет от 7 Вольт (Стабилитрон Д814А) до 14 Вольт (Стабилитрон Д814Д). Ток стабилизации находится в диапазоне от 3 мА до 40 мА.

Д814 серия стабилитронов выполнена в металлостеклянном корпусе, по бокам которого расположены гибкие выводы. На корпусе стабилитрона нанесены его наименование, тип и цоколевка. В Д814 серии стабилитронов, корпус является анодом, имеет несколько большую толщину вывода (около 1мм), чем катод (0,6мм).

Вес стабилитронов данной серии, около 1 г.

Д814 размер.

Д814 серия стабилитронов выполнена в корпусах цилиндрической формы. Диаметр корпуса около 5мм. Длина корпуса без учета выводов около 15 мм.

Д814 параметры.

Напряжение стабилизации при Iст = 5 мА
При Т = +25°C При Т = -60°C При Т = +125°C
Д814А 7…8,5 В 6…8,5 В 7…9,5 В
Д814Б 8…9,5 В 7…9,5 В 8…10,5 В
Д814В 9…10,5 В 8…10,5 В 9…11,5 В
Д814Г 10…12 В 9…12 В 10…13,5 В
Д814Д 11,5…14 В 10…14 В 11,5…15,5 В

— Уход напряжения стабилизации, не более: Через 5 с после включения в течение последующих 10 с: Д814А 170 мВ Д814Б 190 мВ Д814В 210 мВ Д814Г 240 мВ Д814Д 280 мВ

Через 15 с после включения в течение последующих 20 с: 20 мВ

— Прямое напряжение (постоянное) при Iпр = 50 мА, Т = -60 и +25°С, не более 1 В

— Постоянный обратный ток при Uобр = 1 В, не более 0,1 мкА

Дифференциальное сопротивление, не более:
при Iст = 5 мА и Т = +25°C: при Iст = 1 мА и Т = +25°C: при Iст = 5 мА, Т = -60 и +125°C:
Д814А 6 Ом 12 Ом 11,5 мА
Д814Б 10 Ом 18 Ом 10,5 мА
Д814В 12 Ом 25 Ом 9,5 мА
Д814Г 15 Ом 17 мА 8,3 мА
Д814Д 18 Ом 14 мА 7,2 мА

при Iст = 1 мА и Т = +25°C: Д814А 12 Ом Д814Б 18 Ом Д814В 25 Ом Д814Г 30 Ом Д814Д 35 Ом

при Iст = 5 мА, Т = -60 и +125°C: Д814А 15 Ом Д814Б 18 Ом Д814В 25 Ом Д814Г 30 Ом Д814Д 35 Ом

Предельные характеристики стабилитрона Д814 (Д814А, Д814Б, Д814В, Д814Г, Д814Д)

— Минимальный ток стабилизации: 3 мА

Максимальный ток стабилизации:
При Т ≤ +35°C: При Т ≤ +100°C: При Т ≤ +125°C:
Д814А 40 мА 24 мА 11,5 мА
Д814Б 36 мА 21 мА 10,5 мА
Д814В 32 мА 19 мА 9,5 мА
Д814Г 29 мА 17 мА 8,3 мА
Д814Д 24 мА 14 мА 7,2 мА

— Прямой ток (постоянный):100 мА

— Рассеиваемая мощность: При Т ≤ +35°C 340 мВт При Т = +100°C 200 мВт При Т = +125°C 100 мВт

— Рабочая температура (окружающей среды): -60…+125°C

Д814 содержание драгметаллов.

Содержание драгметаллов (золота, серебра, платины и металлов платиновой группы (МПГ)) в Д814 указанно в граммах на единицу изделия.

PGI 208.73 — ИСПОЛЬЗОВАНИЕ ДРАГОЦЕННЫХ МЕТАЛЛОВ, ПРИНАДЛЕЖАЩИХ ГОСУДАРСТВУ

« ПредыдущийСледующий »

PGI 208.73 — ИСПОЛЬЗОВАНИЕ ГОСУДАРСТВЕННЫХ ДРАГОЦЕННЫХ МЕТАЛЛОВ

PGI 208.7301 Определения.

В данном подразделе —

«Процедура оценки двойного ценообразования» означает процедуру, при которой оференты представляют две цены на изделия, содержащие драгоценные металлы: одну на основе драгоценных металлов, предоставленных государством, и другую, основанную на драгоценных металлах, предоставленных подрядчиком. Сотрудник по контрактам оценивает цены, чтобы определить, какая из них лучше всего отвечает интересам правительства.

«Индикаторный код драгоценных металлов (PMIC)» означает однозначный буквенно-цифровой код, присвоенный товарам, пронумерованным национальным запасом, в Общей записи товаров Интегрированной системы данных Министерства обороны, используемый для указания наличия или отсутствия драгоценных металлов в предмете.

PGI 208.7303 Процедуры.

(1) Руководители позиций и должностные лица по контрактам будут использовать PMIC и/или другие соответствующие данные, предоставленные вместе с запросом на закупку, для определения применимости этой части.

(2) Когда оферент уведомляет о потребности в драгоценных металлах, сотрудник по контрактам должен использовать процедуры, описанные в главе 11 DoD 4160.21-M, Руководство по распоряжению военными материальными средствами, для определения наличия требуемых активов из драгоценных металлов и текущих материальных средств, предоставленных государством. (GFM) цены за единицу. Если драгоценные металлы доступны, сотрудник по контрактам должен оценить предложения и присудить контракт на основе предложения, которое отвечает наилучшим интересам правительства.

Технические характеристики

Немаловажную роль играют такие параметры, как максимально допустимые характеристики стабилитрона Д814А. Они являются основными при выборе, как перед проектированием, так и при подборе устройства для замены. При выходе параметров за диапазон данных значений, даже в течение небольшого промежутка времени, прибор может выйти из строя. Приведём их показатели для Д814А:

  • наименьший ток, необходимый для обеспечения точности стабилизации – 3 мА;
  • максимально возможный ток стабилизации при рабочей температуре воздуха: +35ОС – 40 мА;
  • +100ОС – 24 мА;
  • +125ОС – 11,5 мА;

наибольший возможный прямой ток, протекающий постоянно – 100 мА;
предельно допустимая рассеиваемая на стабилитроне мощность при температуре:

меньше +35ОС – 340 мВт;

+100ОС – 200 мВт;
+125ОС – 100 мВт;
диапазон рабочих температур от -60ОС до +125ОС.

Электрические характеристики также содержат важную и интересную информацию о рассматриваемом изделии. Все измерения проводились при температуре +25ОС. Остальные параметры, при которых тестировалось изделие, производители приводят по мере необходимости. Для стабилитрона Д814А они равны:

  • напряжение стабилизации при протекающем через переход токе равном 5 мА и температуре окружающего воздуха: +25ОС – от 7 до 8,5 В;
  • -60ОС – от 6 до 8,5 В;
  • +125ОС – от 7 до 9,5 В;

температурный к-т напряжения стабилизации, измеренный при температуре воздуха от -60 до +125ОС и токе равном 5 мА не должен быть больше 0,070%/ОС;
временный разброс значения напряжения стабилизации при токе 5 мА – ±1%;
уход напряжения стабилизации:

через 5 сек после включения на протяжении следующих 10 сек не более 170 мВ;

через 15 сек после включения на протяжении следующих 20 сек не более 20 мВ;
длительно действующее прямое напряжение при температуре от -60ОС до +25ОС и токе, протекающем через стабилитрон в прямом направлении 50 мА не более 1 В;
постоянный ток, текущий через переход в обратном направлении не более 0,1 мкА;
дифференциальное сопротивление, измеренное при:

Т = +25ОС и IСТ = 5 мА не превышает 6 Ом;

Т = +25ОС и IСТ = 1 мА не превышает 12 Ом;
Т =-60 ОС и +125ОС и IСТ = 5 мА не превышает 15 Ом;

В технической документации производители приводят также меры безопасности, которые следует соблюдать при монтаже и эксплуатации прибора, чтобы он не вышел из строя. Там говорится, что пайка разрешена на расстоянии 5 мм от корпуса и больше. При изгибе ножки нужно отступить от корпуса на 2 мм и далее от оболочки. При пайке железная упаковка прибора не должна нагреваться до температур выше +125ОС.

Проверка мультиметром

Неисправный стабилитрон влияет на напряжение стабилизации источника питания, что сказывается на работоспособности аппаратуры

Поэтому специалисту важно знать, как проверить стабилитрон мультиметром на исправность

Проверка производится аналогично диоду. Если включить мультиметр в режим измерения сопротивления, то при подключении к стабилитрону в прямом направлении (красный щуп к аноду) прибор покажет минимальное сопротивление, а в обратном — бесконечность. Это говорит об исправности полупроводника.

Аналогично выполняется проверка стабилитрона мультиметром в режиме проверки диодов. В этом случае в прямом направлении на экране высветится падение напряжения в районе 400-600 мВ. В обратном либо I, левой части экрана либо .0L, либо какой-то другой знак который говорит о «бесконечности» в измерениях.

На рисунке снизу представлена методика проверки мультиметром.

Аналогичным образом можно проверить стабилитрон, не выпаивая из схемы. Но в этом случае прибор будет всегда показывать сопротивление параллельно подключенных ему элементов, что в некоторых случаях сделает проверку таким образом невозможной.

Однако такая проверка китайским тестером не является полноценной, потому что проверка производится только на пробой, или на обрыв перехода. Для полной проверки необходимо собирать небольшую схему. Пример такой схемы для проверки напряжения стабилитрона вы можете увидеть в видео ниже.

https://youtube.com/watch?v=Iex2WHP-vmg

Принцип Работы

Диод Зенера, иначе полупроводниковый стабилитрон является особенным видом диода, и работает в режиме «пробоя», при обратном смещении р-n перехода. Иначе говоря, до наступления пробоя стабилитрон практически не пропускает ток, но как только на нем возникает пробой, ток на стабилитроне молниеносно вырастает, а дифференциальное сопротивление становится чрезвычайно низким, от долей до нескольких сот Ом.

Возможно, Вам пригодится информация о характеристиках разветвительно-изолирующего блока Бриз.

Эффект Зенера

Еще называемый туннельным эффектом, именно это явление лежит в основе работы полупроводникового стабилитрона. Дело в том, что г-н Зенер обнаружил, что электроны с помощью электрического поля могут просачиваться через тонкий барьер. Говоря более научным языком, при обратном смещении р-n перехода энергетические зоны как бы перекрывают друг друга (см. рис.1), в результате электроны из валентной р-зоны, попадают в зону проводимости полупроводника, что в конечном итоге проводик к резкому увеличению свободных носителей заряда, и, как следствие к возрастанию обратного тока.

Применение:

Как можно догадаться из названия, стабилитрон нужен для того, чтобы что-то стабилизировать. Что чаще всего стабилизируют в электронике? Правильно — чаще всего стабилизируют напряжение. И делают это потому, что под нагрузкой напряжение «проседает». Итак, диод Зенера используется для стабилизации напряжения. Но все не так просто, для того чтобы эта самая стабилизация произошла на наш полупроводник необходимо подать заведомо большее, в разумных пределах, конечно, напряжение. Например: параметры стабилитрона д814а, указывают на то, что напряжение стабилизации д814а диода при t 25 °C колеблется от 6 до 8,5 В, полная таблица в конце статьи.

Подключим д814а диод в простую схему, нелишним будет сказать, что стабилитроны включаются параллельно с резистором.

Подключим схему к питанию. Пусть изначально напряжение на источнике будет равным 5В, подключим тестер к выводам д814а диода и….тестер покажет, что напряжение на стабилитроне точно такое же, ничего не происходит. Но, стоит поднять напряжение на источнике до 10В, и мы увидим совершенно иную картину: напряжение после полупроводника будет 8,56 В, погрешность никто не отменял. Поднимем до 15В, и снова, напряжение после VD1 8,56В. Наш д814а диод замечательно стабилизирует.

Стабилитрон Д818

Описание

Стабилитроны кремниевые, диффузионно-сплавные, малой мощности, прецизионные. Предназначены для стабилизации номинального напряжения 9 В в диапазоне токов стабилизации 3…33 мА с высокими требованиями к стабильности напряжения в диапазоне температур —60…+125 °С. Выпускаются в металлостеклянном корпусе с гибкими выводами. Тип стабилитрона приводится на корпусе. Корпус стабилитрона в рабочем режиме служит положительным электродом (анодом). Масса стабилитрона не более 1 г.

Эксплуатация стабилитронов на прямой ветви вольт-амперной характеристики не допускается.

Изгиб выводов допускается ие ближе 2 мм от корпуса или расплющенной части катодного вывода с радиусом закругления не менее 1,5 мм. Растягивающая сила не должна превышать 19,6 Н для анодного вывода и 9,8 Н для катодного.

Пайка выводов допускается не ближе 5 мм от корпуса. Температура корпуса при пайке не должна превышать +125°С.

Допускается параллельное или последовательное соединение любого числа стабилитронов.

Обозначение Значение для: Ед. изм.
Д818А Д818Б Д818В Д818Г Д818Д Д818Е
Аналог
Uст мин. 7.65 8.1 8.55 8.55 8.55 В
ном. 9 9 9 9 9 9
макс. 10.35 9.9 9.45 9.45 9.45
при Iст 10 10 10 10 10 10 мА
αUст +0.020 -0.029 ±0.01 ±0.005 ±0.002 ±0.001 %/°C
δUст ±0.11 ±0.13 ±0.12 ±0.12 ±0.12 ±0.12 %
Uпр (при Iпр, мА) В
rст (при Iст, мА) 70 (3) 18 (10) 18 (10) 18 (10) 18 (10) 18 (10) Ом
Iст мин. 3 3 3 3 3 3 мА
макс. 33 33 33 33 33 33
Pпp 0.3 0.3 0.3 0.3 0.3 0.3 Вт
T -60…+125 -60…+125 -60…+125 -60…+125 -60…+125 -60…+125 °C
  • Uст — Напряжение стабилизации.
  • αUст — Температурный коэффициент напряжения стабилизации.
  • δUст — Временная нестабильность напряжения стабилизации.
  • Uпр — Постоянное прямое напряжение.
  • Iпр — Постоянный прямой ток.
  • rст — Дифференциальное сопротивление стабилитрона.
  • Iст — Ток стабилизации.
  • Pпp — Прямая рассеиваемая мощность.
  • T — Температура окружающей среды.

Зависимости температурного коэффициента напряжения стабилизации от тока

Зависимости температурного коэффициента напряжения стабилизации от тока

Зависимости ухода напряжения стабилизации от тока

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Схемы включения

На КТ818Г можно собрать несложный усилитель низкой частоты. Для него потребуются два транзистора КТ3102А или КТ3102Б можно также использовать КТ315В. На схеме они обозначены как VT1 и VT2. КТ814А обозначены на схеме как VT3 и VT5, КТ815А – это VT4, VT7 –КТ818Г, VT6 — КТ819Г.

Конденсаторы должны быть рассчитаны на 50 В. Резисторы R7  и R8 проволочные.

Настройка усилителя заключается в подборе номиналов сопротивлений R3 и R6. При этом R3 отвечает за режим работы входного каскада, а R6 за выходной (ток покоя не должен быть больше 60мА).

Наибольшей амплитуды выходного сигнала, без искажений, на нагрузке номиналом 4 Ом, можно добиться при входном напряжении  1 В. В этом случае пиковая мощность — 36 Вт.

На нагрузке 2 Ом максимальное напряжение уменьшается до 10 В, но ток увеличивается до 5 А. При этом мощность достигает значения 50 Вт.

Чтобы увеличить выходную мощность, нужно увеличить напряжение питания, после чего, для корректной работы, изменить сопротивления R3 и R6.

Диод Д814

Диод Д814 Справочник содержания драгоценных металлов в радиодеталях основан на справочных данных различных организаций, занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.

Диоды могут содержать золото, серебро, платину и МПГ (Металлы платиновой группы, Платиновая группа, Платиновые металлы, Платиноиды, ЭПГ)

Принцип действия диода

Диод – это полупроводниковый прибор, с односторонней проводимостью электрического тока: он хорошо пропускает через себя ток в одном направлении и очень плохо — в другом. Это основное свойство диода используется, в частности, для преобразования переменного тока в постоянный ток.

Типы диодов

Выпрямительные диоды. Выпрямительные диоды – самые распространенные полупроводниковые диоды, применяемые в выпрямителях – устройствах, преобразующих переменный ток промышленной частоты в постоянный. В выпрямительных диодах используются переходы с большой площадью для пропускания больших токов. Стабилитроны. Предназначены для использования в схемах, обеспечивающих стабилизацию напряжений. Варикапы. Зависимость емкости n-p -перехода от обратного напряжения используется в полупроводниковых диодах, называемых варикапами. Для варикапов характерна малая инерционность процесса изменения емкости. Высокочастотные диоды. Переключающие диоды. В ряде электронных схем полупроводниковый диод должен работать в режиме переключения, т.е. в одни периоды времени он оказывается смещенным в прямом направлении, а в другие — в обратном. Диоды Шотки. В диодах этого типа используется контакт Шотки (контакт металл – полупроводник). Инжекция неосновных носителей в базу отсутствует, так как прямой ток образуется электронами, движущимися из кремния в металл. Накопление заряда в базе диода не происходит, и поэтому время переключения диода может быть существенно уменьшено (до значений порядка 100 пс). Фотодиод (ФД) представляет собой диод с открытым p-n-переходом. Световой поток, падающий на открытый p-n-переход приводит к появлению в одной из областей дополнительных не основных носителей зарядов, в результате чего увеличивается обратный ток. Светоизлучающие диоды (СИД) преобразуют электрическую энергию в световое излучение за счет рекомбинации электронов и дырок. В обычных диодах рекомбинация (объединение) электронов и дырок происходит с выделением тепла, т. е. без светового излучения.

Генераторные лампы: общие сведения, классификация и применение

Генераторные лампы используются для генерирования и усиления электрических колебаний высоких частот. Они находят применение в радиосвязи, в промышленной электронике, атомной технике, в радионавигации и многих других областях техники, в основном применяются в установках ТВЧ (при производстве натяжных потолков, для закалки металла, в металлургии для сварки труб).

Классификация по предельной рабочей частоте

1) До 20 кГц – низкочастотные или модуляторные и регулирующие лампы непрерывного действия (ГМ, ГП);

2) До 30 МГц – длинноволновые и коротковолновые лампы непрерывного действия (ГК);

3) до 300 МГц – ультракоротковолновые лампы непрерывного действия (ГУ);

4) более 300 МГц – дециметровые и сантиметровые лампы непрерывного действия (ГС).

Классификация ламп по максимальной мощности, длительно рассеиваемой анодом

2) до 1 кВт – средней мощности;

Распределение генераторных ламп по группам в зависимости от максимальной мощности, рассеиваемой анодом и от предельной рабочей частоты

Предельная рабочая частота, МГц

ГС- 11-Р, ГС-13, ГС -14, ГС-19, ГС-21,

ГУ-46, ГУ-48, ГУ-56, ГУ-69Б, ГУ-69П, ГУ -70Б, ГУ-74Б,

ГС-15Б, ГС-23Б, ГС-31Б, ГС-34, ГС-36Б, ГС-38Б,

ГУ-10А, ГУ-10Б, ГУ-89А, ГУ-89Б, ГМ-2А, ГМ-2Б, ГМ-3А, ГМ-3Б, ГМ-3П, ГМ-4Б, ГМ-51А

ГУ-5А, ГУ-5Б, ГУ-26А, ГУ-27А, ГУ-35Б, ГУ-36Б-1, ГУ-37Б,

ГУ-39Б-1, ГУ-39А-1, ГУ-39П-1, ГУ-40Б, ГУ-40Б-1, ГУ-43А,

ГС-7А-1, ГС-7Б-1, ГС-17Б, ГС-18Б, ГС-35А, ГС-35Б

ГК-9П, ГК-12А, ГК-12Б, ГК-12П, ГК-13А, ГМ-1А , ГМ-1П, ГП-2А, ГП-6А, ГУ-21Б, ГУ-22А, ГУ-23А, ГУ-23Б, ГУ-25Б, ГУ-54А, ГУ-55А, ГУ-66А

ГК-1А, ГК-5А, ГК-10А, ГК-10Б, ГК-10П ГК-11А, ГК-11П, ГУ-65А, ГУ-68А, ГУ-88А

Классификация по роду работы

1) генераторные лампы для непрерывного режима работы;

2) импульсные генераторные лампы типа ГИ;

3) импульсные модуляторные лампы типа ГМИ.

Напряжение анода в импульсе, кВ

Виды принудительного охлаждения анодов генераторных ламп, рассеивающих значительные мощности

Эти индексы и указываются в конце обозначения лампы (например, ГУ- 63А). Если индекс не указан, то лампа используется с естественным охлаждением. Модификации ламп, связанные с повышением надёжности и улучшением эксплуатационных характеристик, имеют в конце обозначения буквы Р, В или индекс 1.

Одинаковые лампы, имеющие различное конструктивное оформление для разных видов охлаждения объединены в группы.

Применение генераторных ламп ультракороткого и дециметрового диапазонов

Генераторные лампы ультракороткого и дециметрового диапазонов предназначены для генерирования и усиления колебаний СВЧ диапазона. Значительная группа этих ламп рассчитана на работу в схеме с общей сеткой, которая характерна высокой устойчивостью работы генераторов высокочастотных колебаний на триодах и устраняет необходимость нейтрализации проходной ёмкости.

В схемах с заземлённой сеткой выходной колебательный контур включён между сеткой и анодом. Выходной емкостью в этом случае является емкость между анодом и сеткой, а проходной – емкость между анодом и катодом. Так как генераторные лампы, предназначенные для работы в этих схемах, имеют, как правило, небольшую проницаемость, то возможно проходную емкость (между анодом и катодом) сделать достаточно малой, чем достигается устойчивая работа схемы на высоких частотах. Кроме этого, эти лампы имеют обычно несколько выводов сетки для уменьшения индуктивности выводов. С той же целью выводы электродов генераторных ламп, предназначенных для УКВ и дециметрового диапазонов, делают коаксиальными.

Применение импульсных модуляторных ламп

Генераторные лампы для усиления низкой частоты – модуляторные лампы – применяются в модуляторах мощных передатчиков с амплитудной модуляцией, мощных усилителях низкой частоты, в мощных электронных стабилизаторах напряжения и других схемах. Эти лампы используются в большинстве случаев с заходом в область положительных сеточных напряжений, т.е. с сеточными токами. Однако в этом случае сеточные токи относительно невелики и соответственно мощность, рассеиваемая на сетках, у этой группы ламп по сравнению с другими генераторными лампами также небольшая.

Проверка транзистор-тестером

Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.

Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.

Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.

Рекомендуем посмотреть видео о том, что такое универсальный транзистор-тестер и как им проверять радиоэлектронные компоненты.

Тестер, также как и мультиметр, проверяет целостность р-n перехода и корректно определяет напряжением стабилизации стабилитронов до 4,5 вольт.

При ремонте аппаратуры, рекомендуется элемент стабилизации менять на новый. Не зависимо от наличия исправного p-n перехода. Т.к. высока вероятность, что у диода изменилось напряжение стабилизации или оно может произвольно меняться в процессе работы аппаратуры.

Диод Д814А

Справочник количества содержания ценных металлов в диоде Д814А согласно паспорта на изделие и информационной литературы. Указано точное значение драгоценных металлов в граммах (Золото, серебро, платина, палладий и другие) на единицу изделия.

Содержание драгоценных металлов в диоде Д814А

Золото: 0,0067 грамм. Серебро: 0 грамм. Платина: 0 грамм. Палладий: 0 грамм.

Источник информации: По данным НПО Импульс.

Фото диода Д814А:

Панель ламповая виды

Диод — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического поля. Электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключаемый к отрицательному полюсу — катодом.

О комплектующем изделии – Диод

Диод – видео.

Диод это полупроводниковый прибор основанный на PN-переходе. А если без теории, то диод в одном направлении пропускает ток, а в другом нет. Вот и все.

Как работает диод – видео.

В этом выпуске вы узнаете: что такое диод, принцип действия диода, как работает диод, что такое p – n переход; что такое прямой ток диода, что такое обратный ток диода; каково внутреннее сопротивление диода; что такое вольт- амперная характеристика диода; что такое пропускное и не пропускное напряжение диода; как работает диод в цепи постоянного тока, как работает диод в цепи переменного тока; как устроен плоскостной диод; какие существуют виды диодов; как устроен выпрямительный диод.

Характеристики диодов Д814А:

Купить или продать а также цены на Диод Д814А:

Применение драгоценных металлов в промышленности

Золото является одним из самых ценных и востребованных драгоценных металлов, используемых в промышленности. Оно характеризуется высокой электропроводностью, химической инертностью и устойчивостью к коррозии. Золото находит применение в производстве электроники, медицинском приборостроении, а также в ювелирной промышленности. Благодаря своей устойчивости и привлекательному внешнему виду, золото используется в создании украшений и предметов роскоши.

Серебро также широко используется в промышленности благодаря своим уникальным свойствам. Серебро обладает высокой теплопроводностью и электропроводностью, а также обладает антибактериальным действием. Оно применяется в производстве электроники, фото- и видеоаппаратуры, а также в медицинской индустрии для создания медицинских инструментов и антибактериальных поверхностей.

Платина используется в различных промышленных отраслях. Ее высокая стойкость к коррозии и химическим воздействиям делает ее незаменимой в производстве химических катализаторов. Платина также применяется в ювелирной и часовой промышленности, а также в производстве электродов для аккумуляторов.

Родий характеризуется высокой устойчивостью к коррозии и химическим веществам, а также обладает высокой электропроводностью. Он находит применение в производстве катализаторов, электродов и контактов для электронной техники, а также в производстве высокоточных оптических приборов.

Иридий является одним из самых прочных драгоценных металлов, что делает его ценным материалом в промышленности. Иридий применяется для производства непромокаемых и непроницаемых материалов, а также в производстве электродов для аккумуляторов и лазерных приборов.

Применение драгоценных металлов в промышленности является неотъемлемой частью современного производства. Эти металлы обладают уникальными свойствами, которые делают их незаменимыми во многих отраслях промышленности.

Потенциометры

Потенциометры, содержащие драгметаллы.

  • ППМЛ-М, ППМЛ-И, ППМЛ-ИМ, ППМЛ-Ф, ППМФ-М, ППБЛ-В, РПП, ПТП-1, ПТП-2, ПТП-5, ПЛП-1, ПЛП-2.
  • Некоторые потенциометры не подходят для продажи, так как внутри проволока встречается из нихрома или манганина.

Реле отечественного и импортного производства, содержащие драгметаллы.

  • РЭС7, РЭС8, РЭС9, РЭС10, РЭС14, РЭС15, РЭС22, РЭС32, РЭС34, РЭС37, РЭС48, РЭС78.
  • РП3, РП4, РП5, РП7, РПС3, РПС4, РПС5, РПС7, РПС11, РПС15, РПС18, РПС20, РПС24, РПС32, РПС34, РПС36.
  • ДП12, РКН, РКНМ, РКМ-1, РКМ-1Т, РКМ-П, РЭК43, РЭН-33, ТРА, ТРВ, ТРЛ, ТРМ, ТРН, ТРП, ТРТ, РТН, ТРСМ-1, ТРСМ-2, РВМУ-1, РКП Е-506, СК-594, РВ-5А, РТС-5.
  • Перечисленные реле подходят не все, а только с определёнными паспортами и до определённого месяца и года выпуска.
  • Реле РЭС-6, РЭС-22, РЭС-32 с белыми контактами в целом виде не подходят для продажи, снимайте алюминиевый корпус (крышку) и проверяйте цвет контактов. Если белые, то делайте срезку контактов.
  • Реле РЭС-22, РЭС-32 в целом виде покупаем только с жёлтыми контактами. Срезку контактов не надо делать, присылайте или привозите реле с целыми корпусами, так как на корпусе находится маркировка. А это, в свою очередь, напрямую влияет на цену реле.
  • Реле РЭС-9 с паспортами 00 01 и 200 стоят 2 рубля/ед..
  • У реле РЭС-10 при демонтаже должны быть сохранены внешние выводы (ноги). Без выводов данное реле существенно дешевле.
  • Реле РЭС-47, РЭС-49, РЭС-60 в целом виде покупаем на вес, отправлять Почтой России не особо рентабельно. Возможно разобрать данные реле на жёлтые контакты-пластинки и в таком виде отправлять. Цена в этом случае будет высокой.

Извлечением драгметаллов (аффинаж) занимаются только уполномоченные специализированные организации – аффинажные заводы, которые имеют соответствующие лицензии и необходимое оборудование для того чтобы проводить необходимые технологические операции без вреда для окружающей среды. Мы настоятельно не рекомендуем вам пытаться самостоятельно извлекать драгметаллы из радиодеталей, катализаторов и проч., т.к. во-первых это запрещено законом, а во-вторых – не безопасно для вашей жизни и здоровья. На нашем сайте Вы можете ознакомиться с содержанием драгметаллов в радиодеталях и различном оборудовании. В радиодеталях и приборах производства СССР содержатся такие элементы как Золото Au, Серебро Ag, Платина Pt, Палладий Pd, Тантал Ta, реже Родий Rh и Иридий Ir в основном в виде сплавов. Данные драгметаллы находятся в природе в очень ограниченном количестве и поэтому имеют столь высокую ценность

В связи с этим очень важно чтобы вышедшее из строя оборудование проходило утилизацию в соответствие с законом, т.к. тем самым обеспечивается возврат драгметаллов государству и не наносится непоправимый вред окружающей среде

Проверка транзистор-тестером

Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.

Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.

Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.

Рекомендуем посмотреть видео о том, что такое универсальный транзистор-тестер и как им проверять радиоэлектронные компоненты.

Тестер, также как и мультиметр, проверяет целостность р-n перехода и корректно определяет напряжением стабилизации стабилитронов до 4,5 вольт.

При ремонте аппаратуры, рекомендуется элемент стабилизации менять на новый. Не зависимо от наличия исправного p-n перехода. Т.к. высока вероятность, что у диода изменилось напряжение стабилизации или оно может произвольно меняться в процессе работы аппаратуры.

Схема для проверки

Рассмотрим еще одну простейшую схему для определения напряжения стабилизации, которая состоит из:

  • Регулируемого блока питания. Постоянное напряжение должно изменяться плавно потенциометром от 0 до 50 В (чем выше максимальное напряжение тем больший диапазон элементов вы сможете проверить). Это позволит проверить практически любой маломощный стабилитрон.
  • Набор токоограничивающих резисторов. Обычно они имеют номинал 1 Ком, 2,2 Ком и 4,7 Ком, но их может быть и больше. Все зависит от напряжения и тока стабилизации.
  • Вольтметр, можно использовать обыкновенный мультиметр.
  • Колодка с подпружиненными контактами. Она должна иметь несколько ячеек, чтобы была возможность подключать полупроводники с различными корпусами.

Для проверки подключают стабилитрон по вышеприведенной схеме и постепенно поднимают напряжение на источнике питания от 0. При этом контролируют показания вольтметра. Как только напряжение на элементе перестанет расти, независимо от его увеличения на блоке питания, это и будет стабилизацией по напряжению.

Если на элементе есть маркировка, то полученные при измерении данные сверяют с таблицей в справочнике по параметрам.

Отметим, что стабилитроны могут выпускаться в различном исполнении. Например, КС162 производятся в керамических корпусах, КС133 в стеклянных, Д814 и Д818 в металлических.

Приведем характеристики некоторых распространенных отечественных стабилитронов:

  • КС133а напряжение стабилизации равно 3,3 В, выпускаются в стеклянном корпусе;
  • КС147а поддерживает напряжение на уровне 4,7 В, корпус стеклянный;
  • КС162а– 6,2 В, корпус из керамики;
  • КС175а – 7,5 В, имеет керамический корпус;
  • КС433а – 3,3 В, выпускают в металлическом корпусе;
  • КС515а – 15 В, корпус из металла;
  • КС524г – в керамическом корпусе с напряжением 24 В;
  • КС531в – 31 В, керамический корпус;
  • КС210б – напряжение стабилизации 10 В, корпус из керамики;
  • Д814а – 7-8,5 В, в металлическом корпусе;
  • Д818б – 9 В, металлический корпус;
  • Д817б – 68 В, в корпусе из металла.

Для проверки стабилитрона с большими напряжениями стабилизации применяется другая схема, которая представлена на рисунке снизу.

Проверка производится аналогично описанному способу. Похожие приборы выпускаются китайскими производителями.

Однако, можно собрать простейшую схему для проверки стабилитронов с применением мультиметра. Это хорошо показано на видео далее.

Следует предупредить, что показанную на видео электрическую схему применять не рекомендуется, т.к. она небезопасна и требует соблюдения техники безопасности. В противном случае можно получить травму (в лучшем случае).

Конденсаторы

Конденсаторы, содержащие драгметаллы:

  • Конденсаторы керамические монолитные следующих серий: КМ3, КМ4, КМ5, + КМ6, К10-17, К10-26, К10-48.
  • Конденсаторы в пластиковом корпусе: К10-17, К10-23, К10-28, К10-43, К10-46, К10-47.
  • Конденсаторы КМ5 группы Н30 зелёного цвета- это конденсаторы, на которых чётко написано “Н30”.
  • Советские бескорпусные конденсаторы покупаем всех размеров, импорт не подмешивать, сразу видно.
  • Импортные бескорпусные конденсаторы в настоящее время не принимаем.
  • Конденсаторы импортные, определённых марок (смотрите в фотокаталоге).
  • Конденсаторы танталовые следующих серий: К52-9, ЭТ, ЭТН, К53-1, К53-7, К53-16, К53-18, К53-28.
  • Конденсаторы К50-6, К50-12, К53-4, К53-14, К53-21, К71-7, К73п-2, К73-3, К73-9, К78-2 и подобные не подходят, такие не покупаем.
  • Конденсаторы серебряно-танталовые: К52-1, К52-2, К52-5, К52-7, ЭТО-1, ЭТО-2.
  • Ёмкостные сборки Б-18, Б-20, проходные фильтры Б-23, линии задержки МЛЗ, микромодули, ГИС.
Понравилась статья? Поделиться с друзьями:
Пафос клуб
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: