SS9013 Схема контактов транзистора, аналог, использование, характеристики и применение
В этой статье описывается распиновка SS9013, эквиваленты, использование, функции, приложения и другие сведения о том, где и как его использовать в электронной схеме.
Объявления
Объявления
Особенности/технические характеристики:
- Тип упаковки: TO-92
6
6
- Тип транзистора: NPN
- Макс. ток коллектора (I C ): 5 А или 500 мА
- Максимальное напряжение коллектор-эмиттер (В CE ): 20 В
- Максимальное напряжение коллектор-база (В CB ): 40 В
Максимальное напряжение эмиттер-база (VBE): 5 В
Максимальное рассеивание коллектора (шт.): 625 Милливатт
Максимальная частота перехода (fT): 150 МГц
Минимальное и максимальное усиление постоянного тока (h FE ): 64–202
Макс. температура хранения и рабочая температура Должно быть: от -55 до +150 по Цельсию
PNP. другой, пожалуйста, смотрите информацию о распиновке транзистора, который вы хотите заменить.
Транзистор SS9013 Объяснение/описание:
SS9013 — транзистор BJT NPN, изготовленный в корпусе TO-92. Он в основном используется для коммутации и усиления общего назначения в коммерческих устройствах. Кроме того, это также идеальный транзистор для использования в хобби и образовательных проектах по электронике. Транзистор обладает некоторыми очень хорошими характеристиками в своем небольшом корпусе TO-92, благодаря чему его можно использовать в различных электронных приложениях. Напряжение коллектор-эмиттер транзистора составляет 20 В, поэтому его можно легко использовать в электронных приложениях, требующих менее 20 В. Типичное напряжение насыщения этого транзистора составляет 0,16 В, что также подходит для универсального применения. Для полного выходного тока, то есть 500 мА, транзистору требуется 50 мА на его базе. Прирост или ч FE имеет номера от 64 до 202, но этот транзистор имеет разные номера деталей, которые определяют его коэффициент усиления, например коэффициент усиления SS9013D составляет 64–91, коэффициент усиления SS9013E составляет 78–112, коэффициент усиления SS9013F составляет 96–135, коэффициент усиления SS901G составляет 112–166, а коэффициент усиления SS9013H 144~202.
Где мы можем его использовать и как использовать:
SS9013 можно использовать во многих электронных приложениях, и в вашей электронной лаборатории обязательно должен быть транзистор. Этот транзистор в основном разработан для целей усиления звука, поэтому его можно использовать в схемах, где требуется небольшое усиление звука около 1 Вт, например, электронные звонки, небольшие радиоприемники и схемы приемников, усиление аудиосигнала любого электронного приложения, электронный зуммер и т. д. Более того. его также можно использовать для переключения, например, ток коллектора транзистора составляет 500 мА, что достаточно хорошо для рабочих нагрузок, таких как реле, мощные светодиоды, ИС, электронные приложения, другая часть схемы и т. д. Кроме того, он также может использоваться в качестве альтернативного или эквивалентного транзистора для других транзисторов общего назначения в общих приложениях, таких как 2N3904, 2N4401, BC547, BC337, 2N2222 и т.
Как проверить динистор DB3
Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.
Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.
Источник питания
Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.
Этапы проверки
Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжение на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.
Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.
Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.
Справочники
|
|||||
Цоколевка широко распространенных транзисторов и цветовая и кодовая маркировка транзисторов. Цветовая и кодовая маркировка транзисторов В цветовой и кодовой маркировке транзисторов нет единых стандартов. Каждый завод, который производит транзисторы, принимает свои цветовые и кодовые обозначения. Вы можете встретить транзисторы одного типа и группы, которые изготовлены разными заводами и маркируются по-разному, или разные транзисторы, которые маркируются одинаково. В этом случае их можно отличить только по некоторым дополнительным признакам, таким как длина выводов коллектора и эмиттера или окраска торцевой (противоположной выводам) поверхности транзистора. Табл. 8.13. Цветовая и кодовая маркировка транзисторов в корпусе КТ-26. Цветовая маркировка транзисторов осуществляется двумя точками. Тип транзистора обозначается на боковой поверхности, а маркировка группы на торцевой (рис. 8.2). Кодовая маркировка наносится на боковую поверхность транзистора (рис. 8.2). Тип транзистора обозначается кодовым знаком (табл. 8.13), а группа — соответствующей буквой. Дата изготовления в соответствии с ГОСТ 26486-82 кодируется двумя буквами или буквой и цифрой (табл. 8.14). Первая буква обозначает год выпуска, а следующая за ней цифра или буква — месяц. Кодированное обозначение даты изготовления применяется не только для транзисторов, но и для других радиоэлементов. На рис. 8.3 приведены примеры кодовой и цветовой маркировки транзисторов в корпусе КТ-26. Транзисторы в корпусе КТ-27 могут маркироваться или буквенно — цифровым кодом (табл. 8.16 и рнс. 8.4) или кодом, состоящим из геометрических фигур (рис. 8.4). Транзисторы в корпусе КТ-27 дополнительно маркируются окрашиванием торца корпуса, противоположного выводам: КТ814 — серо — бежевый; КТ815 — серый нлн снренево — фиолетовый; КТ816 — розово — красный; КТ817 — серо — зелёный; КТ683 — фиолетовый; КТ9115 — голубой. Транзисторы КТ814Б, КТ815Б, КТ816Б и КТ817Б иногда маркируются только окрашиванием торцевой поверхности без нанесения буквенно — цифрового кода. Примеры маркировки транзисторов в корпусе КТ-13 приведены на рис. 8.6. Буква группы у транзисторов КТ315 наносится сбоку поверхности, а КТ361 — посередине. Тип транзисторов КПЗОЗ и КП307 в корпусе КТ-1-12 маркируются соответственно цифрами 3 и 7, группа — соответствующей буквой. Транзисторы КП327А маркируются одной белой точкой, а КП327Б — двумя (рис. 8.3).
Кизлюк А.И. Ключевые теги: Кизлюк |
|||||
|
|||||
|
|||||
Биполярный транзистор BD711 — описание производителя. Основные параметры. Даташиты.
Наименование производителя: BD711
Тип материала: Si
Полярность: NPN
Максимальная рассеиваемая мощность (Pc): 75
W
Макcимально допустимое напряжение коллектор-база (Ucb): 100
V
Макcимально допустимое напряжение коллектор-эмиттер (Uce): 100
V
Макcимально допустимое напряжение эмиттер-база (Ueb): 5
V
Макcимальный постоянный ток коллектора (Ic): 12
A
Предельная температура PN-перехода (Tj): 150
°C
Граничная частота коэффициента передачи тока (ft): 3
MHz
Статический коэффициент передачи тока (hfe): 15
Корпус транзистора:
BD711
Datasheet (PDF)
..1. Size:1174K st bd707 bd708 bd709 bd711 bd712.pdf
BD707/709/711BD708/712COMPLEMENTARY SILICON POWER TRANSISTORS COMPLEMENTARY PNP — NPN DEVICES APPLICATION LINEAR AND SWITCHING INDUSTRIALEQUIPMENT DESCRIPTION The BD707, BD709 and BD711 are siliconEpitaxial-Base NPN power transistors in Jedec32TO-220 plastic package. They are intented for1use in power linear and switching applications.The BD707 and BD711 compl
..2. Size:110K st bd707 bd708 bd709 bd710 bd711 bd712.pdf
BD707/709/711BD708/710/712COMPLEMENTARY SILICON POWER TRANSISTORS SGS-THOMSON PREFERRED SALESTYPES COMPLEMENTARY PNP — NPN DEVICESAPPLICATION LINEAR AND SWITCHING INDUSTRIALEQUIPMENTDESCRIPTIONThe BD707, BD709, and BD711 are silicon32epitaxial-base NPN power transistors in Jedec1TO-220 plastic package, intented for use inpower linear and switching applications.TO
..3. Size:190K inchange semiconductor bd711.pdf
isc Silicon NPN Power Transistor BD711DESCRIPTIONDC Current Gain -: h = 40(Min.)@ I = 0.5AFE CCollector-Emitter Sustaining Voltage-: V = 100V(Min.)=CEO(SUS)Complement to Type BD712Minimum Lot-to-Lot variations for robust deviceperformance and reliable operationAPPLICATIONSDesigned for use in power linear and switching applications.ABSOLUTE MAXIMUM RATINGS(T =
..4. Size:60K inchange semiconductor bd707 bd709 bd711.pdf
Inchange Semiconductor Product Specification Silicon NPN Power Transistors BD707 BD709 BD711 DESCRIPTION With TO-220C package The BD707 and BD711are respectively complement to type BD708 and BD712 APPLICATIONS Intented for use in power linear and switching applications. PINNING PIN DESCRIPTION1 Base Collector;connected to 2 mounting base 3 EmitterAbsolute m
Другие транзисторы… BD701
, BD702
, BD705
, BD706
, BD707
, BD708
, BD709
, BD710
, 2SC945
, BD712
, BD719
, BD720
, BD721
, BD722
, BD723
, BD724
, BD725
.
Схема Дарлингтона на практике
Пришло время проверить свойства схемы Дарлингтона на практике. Конечно, согласно предыдущей схеме, такую конфигурацию можно построить «вручную» на двух транзисторах. Однако, эта схема настолько популярна, что производители также продают готовые транзисторы Дарлингтона, которые имеют такое двойное соединение и выглядят, как обычный одиночный транзистор.
В нашем эксперименте мы будем использовать транзистор MPSA29 (β> 10000), который представляет собой готовый транзистор Дарлингтона. Сравним его работу с ранее рассмотренным BC546 (β = 200–450). На этот раз, мы построим две версии «графитово-бумажного потенциометра», в которых один из путей, по которым протекает ток, будет нарисован карандашом на листе бумаги!
Для выполнения этого упражнения вам потребуются:
- Резистор 1 × 10 кОм,
- Резистор 1 × 1 кОм,
- 1 × светодиод (выберите свой любимый цвет),
- 1 × транзистор BC546,
- 1 × транзистор MPSA29,
- 1 × карандаш,
- 1 × лист бумаги,
- батареи 4 × AA,1 × слот для 4 батареек АА,
- 1 × макетная плата,
- комплект соединительных проводов.
При выполнении упражнений обратите внимание на то, что транзисторы BC546 и MPSA29 имеют разные положения выводов (подробности см. ниже)!
Сначала сделайте потенциометр самостоятельно
На листе бумаги проведите карандашом толстую линию, длиной в несколько сантиметров. Несколько раз проведите карандашом по линии, чтобы она была четкой (одного проведения недостаточно, потому что углеродный след на листе не будет сплошным). Как вы, наверное, знаете, графит проводит электричество, но обладает довольно большим сопротивлением. Проведя линию, вы сделали резистор с сопротивлением в сотни килоом на сантиметр. Это вы можете проверить с помощь. мультиметра
Сначала сделайте потенциометр самостоятельно. На листе бумаги проведите карандашом толстую линию, длиной в несколько сантиметров. Несколько раз проведите карандашом по линии, чтобы она была четкой (одного проведения недостаточно, потому что углеродный след на листе не будет сплошным). Как вы, наверное, знаете, графит проводит электричество, но обладает довольно большим сопротивлением. Проведя линию, вы сделали резистор с сопротивлением в сотни килоом на сантиметр. Это вы можете проверить с помощь. мультиметра.
С помощью мультиметра, можно измерить сопротивление линии, проведенной карандашом
Теперь нам нужно разместить на макетной плате микросхему, которая будет использовать наш графитовый резистор. Пока мы будем использовать хорошо известный транзистор BC546
Однако, стоит сразу обратить внимание на другое расположение выводов MPSA29!
Сравнение выводов транзисторов BC546 и MPSA29
Мы будем использовать графитовую линию как «потенциометр», регулирующий ток, протекающий через основание. Просто прижмите провода к листу бумаги. Чем больше расстояние между проводниками, тем больше сопротивление между ними. Резистор 10 кОм используется для защиты транзистора от возгорания, в случае случайного короткого замыкания этих проводов.
Принципиальная схема для тестирования усиления BC546
На практике вся схема может выглядеть так:
Сборка схемы на макетной плате | Схема с BC546 на практике |
Пришло время проверить, как ведет себя схема при разном сопротивлении. Выполняя это упражнение, не касайтесь пальцами проводов «потенциометра» — сопротивление кожи относительно низкое, что нарушит ход данного эксперимента.
Сопротивление низкое — светодиод горит | Сопротивление высокое — светодиод не горит |
Чем длиннее дорожка между концами проводов, тем выше сопротивление и меньше тока течет в базу. На какой длине дорожки светодиод перестает гореть? Запишите свой результат, выключите питание и замените транзистор на MPSA29. Однако помните, что у этого транзистора другой эмиттер и коллектор!
Принципиальная схема для тестирования усиления MPSA29
На практике вся схема может выглядеть так:
Схема на макетной плате | Пример с MPSA29 |
После сборки схемы включите питание, и снова прижмите концы проводов к дорожке на листе. Теперь расстояние между проводами, на которых горит светодиод, должно быть намного больше. Это все благодаря свойствам нового транзистора, который имеет гораздо более высокое бета-усиление.
Сопротивление низкое — светодиод горит | Сопротивление высокое — светодиод все еще горит |
Проверка КТ815
Не всегда покупаемые элементы оказываются в рабочем состоянии. Пусть бракованные элементы попадаются не так часто, но любой радиолюбитель или просто покупатель обязан знать, как проверить такой прибор.
Во-первых
, проверить работоспособность КТ815 можно специальным пробником, но рассмотрим проверку обычным мультиметром , так как предыдущий прибор есть далеко не у всех.
Для проверки при помощи мультиметра, прибор нужно перевести в режим прозвонки. Сначала прикладываем отрицательный щуп к базе, а положительный к коллектору. На дисплее должно отобразиться значение от 500 до 800 мв. Затем меняем щупы, поставив на базу положительный, а на эмиттер отрицательный. Значения должны примерно равны прошлым.
Затем нужно проверить обратное падение напряжение
. Для этого поставим сначала отрицательный щуп на базу, а положительный на коллектор. Должны получится единица. В случае с замером на базе и эмиттере, произойдёт то же самое.
Т ранзисторы П213
— германиевые, мощные, низкочастотные, структуры — p-n-p. Корпус металло-стекляный. Маркировка буквенно — цифровая, сверху корпуса. На рисунке ниже — цоколевка П213.
Маркировка
Цифры “13001” на корпусе дают общее представление об этом полупроводниковом устройстве. Многие производители маркируют так свои изделия из-за отсутствия места на корпусе ТО-92, не указывая при этом префикс в начале. В статье приведены технические характеристики устройств малоизвестных в России производителей DGNJDZ, Semtech Electronics, YFWDIODE. Указанные производители в своих даташитах не указывают дополнительных символов маркировки. Без дополнительных обозначений маркирует свой транзистор TS13001 тайваньская компания TSMC. Первые две литеры “TS” являются аббревиатурой первых двух слов в полном названии компании Taiwan Semiconductor Manufacturing Company. В тоже время, на рыке достаточно широко представлены транзисторы mje13001, которые тоже промаркированы цифрами 13001. SHENZHEN JTD ELECTRONICS и многие другие производители применяют s13001 s8d при маркировке своих девайсов. Встречаются и другие префиксы, не рассмотренные в статье. Многие продавцы не заморачиваясь с маркировкой в наименовании товара, указывают все возможные его типы вместе с датой производства.
Архив блога
-
►
2020
(2)
►
февраля
(1)
►фев 09
(1)►
января
(1)
►янв 19
(1)
-
►
2019
(11)
►
июня
(1)
►июн 29
(1)►
апреля
(2)
►апр 30
(1)►
апр 26
(1)►
февраля
(5)
►фев 27
(1)►
фев 24
(1)►
фев 16
(1)►
фев 12
(1)►
фев 07
(1)►
января
(3)
►янв 27
(1)►
янв 25
(1)►
янв 15
(1)
-
►
2018
(35)
►
декабря
(1)
►дек 01
(1)►
ноября
(1)
►ноя 18
(1)►
октября
(4)
►окт 24
(1)►
окт 09
(1)►
окт 06
(1)►
окт 04
(1)►
сентября
(4)
►сен 18
(4)►
июля
(6)
►июл 31
(5)►
июл 03
(1)►
мая
(2)
►мая 24
(1)►
мая 17
(1)►
апреля
(5)
►апр 25
(1)►
апр 22
(1)►
апр 19
(1)►
апр 01
(2)►
марта
(5)
►мар 29
(1)►
мар 10
(1)►
мар 06
(1)►
мар 05
(2)►
февраля
(2)
►фев 25
(1)►
фев 12
(1)►
января
(5)
►янв 27
(1)►
янв 18
(1)►
янв 17
(2)►
янв 09
(1)
-
►
2017
(98)
►
декабря
(10)
►дек 24
(2)►
дек 06
(1)►
дек 03
(2)►
дек 02
(1)►
дек 01
(4)►
ноября
(35)
►ноя 29
(1)►
ноя 22
(1)►
ноя 19
(2)►
ноя 16
(20)►
ноя 14
(9)►
ноя 13
(2)►
октября
(9)
►окт 23
(1)►
окт 21
(1)►
окт 20
(1)►
окт 17
(3)►
окт 13
(2)►
окт 08
(1)►
сентября
(8)
►сен 22
(1)►
сен 18
(1)►
сен 13
(2)►
сен 12
(1)►
сен 09
(1)►
сен 04
(1)►
сен 02
(1)►
августа
(1)
►авг 13
(1)►
июля
(1)
►июл 09
(1)►
июня
(1)
►июн 22
(1)►
мая
(3)
►мая 23
(1)►
мая 22
(1)►
мая 16
(1)►
апреля
(3)
►апр 09
(2)►
апр 07
(1)►
марта
(11)
►мар 31
(1)►
мар 25
(1)►
мар 23
(1)►
мар 18
(1)►
мар 17
(2)►
мар 14
(1)►
мар 03
(1)►
мар 02
(2)►
мар 01
(1)►
февраля
(6)
►фев 28
(1)►
фев 26
(1)►
фев 24
(2)►
фев 20
(1)►
фев 02
(1)►
января
(10)
►янв 28
(3)►
янв 24
(2)►
янв 21
(1)►
янв 19
(1)►
янв 14
(1)►
янв 13
(2)
-
►
2016
(184)
►
декабря
(8)
►дек 24
(1)►
дек 23
(1)►
дек 22
(1)►
дек 20
(1)►
дек 15
(1)►
дек 14
(1)►
дек 13
(1)►
дек 11
(1)►
ноября
(24)
►ноя 30
(1)►
ноя 29
(3)►
ноя 28
(1)►
ноя 26
(3)►
ноя 25
(1)►
ноя 21
(2)►
ноя 19
(2)►
ноя 15
(1)►
ноя 14
(3)►
ноя 12
(2)►
ноя 10
(1)►
ноя 08
(1)►
ноя 06
(2)►
ноя 04
(1)►
октября
(7)
►окт 31
(1)►
окт 24
(1)►
окт 19
(2)►
окт 11
(2)►
окт 02
(1)►
сентября
(23)
►сен 24
(2)►
сен 23
(1)►
сен 22
(8)►
сен 20
(2)►
сен 16
(1)►
сен 15
(1)►
сен 12
(1)►
сен 10
(2)►
сен 03
(3)►
сен 01
(2)►
августа
(7)
►авг 06
(4)►
авг 03
(2)►
авг 01
(1)►
июля
(28)
►июл 31
(2)►
июл 30
(3)►
июл 28
(1)►
июл 24
(1)►
июл 22
(1)►
июл 21
(2)►
июл 20
(2)►
июл 18
(4)►
июл 15
(3)►
июл 10
(1)►
июл 07
(1)►
июл 06
(3)►
июл 05
(1)►
июл 04
(2)►
июл 01
(1)►
июня
(11)
►июн 27
(1)►
июн 26
(2)►
июн 19
(2)►
июн 16
(1)►
июн 13
(1)►
июн 06
(2)►
июн 05
(1)►
июн 03
(1)►
мая
(22)
►мая 31
(5)►
мая 27
(2)►
мая 26
(1)►
мая 24
(2)►
мая 22
(3)►
мая 21
(2)►
мая 16
(1)►
мая 15
(1)►
мая 14
(1)►
мая 09
(2)►
мая 04
(1)►
мая 01
(1)►
апреля
(9)
►апр 23
(2)►
апр 16
(1)►
апр 13
(1)►
апр 09
(1)►
апр 04
(1)►
апр 02
(3)►
марта
(25)
►мар 26
(1)►
мар 22
(1)►
мар 21
(3)►
мар 20
(5)►
мар 19
(3)►
мар 17
(1)►
мар 12
(1)►
мар 09
(1)►
мар 08
(1)►
мар 07
(2)►
мар 06
(3)►
мар 05
(3)►
февраля
(10)
►фев 28
(1)►
фев 24
(1)►
фев 22
(1)►
фев 20
(1)►
фев 10
(1)►
фев 06
(2)►
фев 02
(3)►
января
(10)
►янв 30
(1)►
янв 26
(1)►
янв 24
(1)►
янв 20
(1)►
янв 19
(4)►
янв 09
(1)►
янв 06
(1)
-
►
2015
(125)
►
декабря
(16)
►дек 30
(4)►
дек 24
(1)►
дек 21
(1)►
дек 20
(5)►
дек 13
(3)►
дек 05
(1)►
дек 04
(1)►
ноября
(35)
►ноя 27
(1)►
ноя 25
(1)►
ноя 22
(3)►
ноя 21
(7)►
ноя 19
(1)►
ноя 18
(1)►
ноя 17
(2)►
ноя 16
(3)►
ноя 15
(3)►
ноя 14
(6)►
ноя 11
(2)►
ноя 09
(3)►
ноя 06
(2)►
октября
(8)
►окт 31
(1)►
окт 23
(3)►
окт 22
(3)►
окт 08
(1)►
сентября
(5)
►сен 29
(1)►
сен 28
(1)►
сен 18
(1)►
сен 17
(1)►
сен 11
(1)►
августа
(10)
►авг 21
(1)►
авг 20
(5)►
авг 18
(1)►
авг 16
(1)►
авг 07
(2)►
июля
(4)
►июл 31
(1)►
июл 10
(1)►
июл 06
(1)►
июл 01
(1)►
июня
(9)
►июн 30
(1)►
июн 26
(1)►
июн 25
(1)►
июн 22
(1)►
июн 19
(1)►
июн 18
(1)►
июн 13
(1)►
июн 09
(1)►
июн 01
(1)►
мая
(11)
►мая 27
(1)►
мая 25
(1)►
мая 23
(2)►
мая 20
(1)►
мая 17
(1)►
мая 16
(2)►
мая 11
(1)►
мая 05
(1)►
мая 04
(1)►
апреля
(5)
►апр 29
(1)►
апр 19
(2)►
апр 16
(1)►
апр 06
(1)►
марта
(4)
►мар 26
(2)►
мар 23
(1)►
мар 10
(1)►
февраля
(6)
►фев 28
(1)►
фев 22
(1)►
фев 14
(1)►
фев 10
(2)►
фев 01
(1)►
января
(12)
►янв 17
(1)►
янв 13
(2)►
янв 12
(1)►
янв 09
(1)►
янв 06
(2)►
янв 05
(1)►
янв 04
(1)►
янв 03
(2)►
янв 01
(1)
-
▼
2014
(232)
►
декабря
(13)
►дек 31
(1)►
дек 27
(1)►
дек 26
(1)►
дек 23
(1)►
дек 22
(1)►
дек 20
(1)►
дек 19
(1)►
дек 14
(2)►
дек 13
(1)►
дек 06
(1)►
дек 01
(2)►
ноября
(5)
►ноя 30
(3)►
ноя 19
(1)►
ноя 03
(1)►
октября
(1)
►окт 16
(1)►
сентября
(1)
►сен 21
(1)►
августа
(5)
►авг 19
(1)►
авг 11
(1)►
авг 08
(3)►
июня
(15)
►июн 30
(1)►
июн 27
(1)►
июн 24
(3)►
июн 22
(2)►
июн 21
(3)►
июн 05
(2)►
июн 04
(1)►
июн 03
(2)►
мая
(2)
►мая 26
(1)►
мая 20
(1)►
апреля
(5)
►апр 17
(2)►
апр 13
(1)►
апр 12
(1)►
апр 02
(1)►
марта
(3)
►мар 10
(2)►
мар 03
(1)►
февраля
(10)
►фев 19
(1)►
фев 04
(8)►
фев 01
(1)-
▼
января
(172)
►
янв 26
(20)
▼
янв 25
(16)►
янв 20
(2)
►
янв 19
(30)
►
янв 18
(10)
►
янв 17
(41)
►
янв 10
(13)
►
янв 06
(40)
-
Преимущества схемы Дарлингтона
Транзисторы Дарлингтона используются так же, как одинарные биполярные. Их можно рассматривать как один транзистор с измененными параметрами
Наиболее важной особенностью такого изменения является умножение текущих коэффициентов усиления
Вернемся к примеру, приведенному в начале: объединив мощный транзистор с β = 40 с меньшим значением β, мы получим коэффициент усиления 1600. Для включения нагрузки, потребляющей 5 А, потребуется всего 3 мА — это ток, который успешно обеспечивает большинство микроконтроллеров.
Однако необходимо помнить, что транзисторы в этом соединении загружены неравномерно: большая часть тока проходит через T2. Это означает, что они не обязательно должны быть одного типа. Например, T1 может быть транзистором малой мощности с большим β, что делает результирующее усиление еще выше!
H13005D Datasheet (PDF)
Транзистор h945
1.1. h13005dl.pdf Size:120K _jdsemi
R H13005DL 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Mainly used for 110V power Fluorescent Lamp、 Electronic Ballast,etc 2. 2. 2
1.2. h13005d 2.pdf Size:118K _jdsemi
R H13005D 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Fluorescent Lamp、Electronic Ballast、 and Switch-mode power supplies 2. 2. 2.
1.3. h13005d.pdf Size:118K _jdsemi
R H13005D 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Fluorescent Lamp、Electronic Ballast、 and Switch-mode power supplies 2. 2. 2.
Цоколевка широко распространенных транзисторов
Цоколевка широко распространенных транзисторов и цветовая и кодовая маркировка транзисторов.
Цветовая и кодовая маркировка транзисторов
В цветовой и кодовой маркировке транзисторов нет единых стандартов. Каждый завод, который производит транзисторы, принимает свои цветовые и кодовые обозначения. Вы можете встретить транзисторы одного типа и группы, которые изготовлены разными заводами и маркируются по-разному, или разные транзисторы, которые маркируются одинаково. В этом случае их можно отличить только по некоторым дополнительным признакам, таким как длина выводов коллектора и эмиттера или окраска торцевой (противоположной выводам) поверхности транзистора.
Табл. 8.13. Цветовая и кодовая маркировка транзисторов в корпусе КТ-26.
Цветовая маркировка транзисторов осуществляется двумя точками. Тип транзистора обозначается на боковой поверхности, а маркировка группы на торцевой (рис. 8.2).
Кодовая маркировка наносится на боковую поверхность транзистора (рис. 8.2). Тип транзистора обозначается кодовым знаком (табл. 8.13), а группа — соответствующей буквой. Дата изготовления в соответствии с ГОСТ 26486-82 кодируется двумя буквами или буквой и цифрой (табл. 8.14). Первая буква обозначает год выпуска, а следующая за ней цифра или буква — месяц. Кодированное обозначение даты изготовления применяется не только для транзисторов, но и для других радиоэлементов. На рис. 8.3 приведены примеры кодовой и цветовой маркировки транзисторов в корпусе КТ-26.
Транзисторы в корпусе КТ-27 могут маркироваться или буквенно — цифровым кодом (табл. 8.16 и рнс. 8.4) или кодом, состоящим из геометрических фигур (рис. 8.4).
Транзисторы в корпусе КТ-27 дополнительно маркируются окрашиванием торца корпуса, противоположного выводам: КТ814 — серо — бежевый;
КТ815 — серый нлн снренево — фиолетовый;
КТ816 — розово — красный;
КТ817 — серо — зелёный;
Транзисторы КТ814Б, КТ815Б, КТ816Б и КТ817Б иногда маркируются только окрашиванием торцевой поверхности без нанесения буквенно — цифрового кода.
Примеры маркировки транзисторов в корпусе КТ-13 приведены на рис. 8.6. Буква группы у транзисторов КТ315 наносится сбоку поверхности, а КТ361 — посередине.
Тип транзисторов КПЗОЗ и КП307 в корпусе КТ-1-12 маркируются соответственно цифрами 3 и 7, группа — соответствующей буквой. Транзисторы КП327А маркируются одной белой точкой, а КП327Б — двумя (рис. 8.3).
Советская «силиконовая долина»
В советское время, в начале 60-х годов, город Зеленоград стал плацдармом для организации в нем Центра микроэлектроники. Советский инженер Щиголь Ф. А. разрабатывает транзистор 2Т312 и его аналог 2Т319, который в последующем стал главным компонентом гибридных цепей. Именно этот человек заложил основу для выпуска в СССР германиевых транзисторов.
В 1964 году на базе Научно-исследовательского института точных технологий создал первую интегральную микросхему IC-Path с 20 элементами на кристалле, выполняющую задачу совокупности транзисторов с резистивными соединениями. В это же время появилась другая технология: были запущены первые плоские транзисторы «Плоскость».
В 1966 году в Пульсарском научно-исследовательском институте начала действовать первая экспериментальная станция по производству плоских интегральных микросхем. В NIIME группа доктора Валиева начала производство линейных резисторов с логическими интегральными схемами.
В 1968 году Исследовательский институт Пульсар произвел первую часть тонкопленочных гибридных ИС с плоскими транзисторами с открытой рамой типов KD910, KD911, KT318, которые предназначены для связи, телевидения, радиовещания.
Линейные транзисторы с цифровыми ИС массового использования (типа 155) были разработаны в Научно-исследовательском институте МЭ. В 1969 году советский физик Алферов Ж. И. открыл миру теорию по управлению электронными и световыми потоками в гетероструктурах на базе арсенид-галлиевой системы.
Характеристики
Основное назначение это стабилизация положительного напряжения. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.
Так же популярна LM317T, с ней не встречался, поэтому пришлось долго искать правильный даташит на неё. Оказалось, что они полностью идентичны по параметрам, букв «T» в конце маркировки обозначает корпус TO-220 на 1,5 Ампер.
Скачать даташиты:
- полный LM317, LM317T datasheet;
- LM117, LM217, LM317, LM317T datasheet.
Характеристики
LM317 | LM338 | LM350 | |
Входное Вольт | 1,2 – 37В | 1,2 – 37В | 1,2 – 37В |
Напряжение на выходе | до 36В | до 36В | до 36В |
Сила тока | 1,5А | 5А | 3А |
Нагрев | до 125° | — | — |
Защита | от перегрева от замыкания | — | — |
Нестабильность на выходе | 0,1% | — | — |
Даже при наличии интегрированных систем защиты не следует эксплуатировать на пределе возможностей. Если выйдет из строя, неизвестно сколько Вольт будет на выходе, можно будет спалить дорогостоящую нагрузку.
Приведу основные электрические характеристики из LM317 datasheet на русском . Не все знают технические термины на английском.
В даташите указана огромная сфера применения, проще написать где она не используется.
Заключение
Информация о маркировочных кодах, содержащаяся в литературе, требует критического подхода и осмысления. К сожалению, красиво оформленный каталог с безукоризненной полиграфией не гарантируют от опечаток, ошибок, разночтений и противоречий, поэтому исходите из данных, что приведены в справочнике о маркировке радиоэлементов.
В заключение хотелось бы поблагодарить источники, которые были использованы для подбора материала к данной статье:
www.mp16.ru
www.rudatasheet.ru
www.texnic.ru
www.solo-project.com
www.ra4a.narod.ru
Предыдущая
ПолупроводникиЧто такое биполярный транзистор
Следующая
ПолупроводникиSMD транзисторы
Заключение
Устройства SiC являются отличными кандидатами для улучшения силовой электроники, работающей в области среднего и высокого напряжения. От полупроводниковых трансформаторов до электроприводов класса мегаватт, вспомогательных систем питания и твердотельных автоматических выключателей мы показали, как SiC МОП-транзисторы в целом и Supercascode на основе SiC JFET в частности предлагают весьма убедительные преимущества в высокой производительности и упрощении системы. Рост использования в этих приложениях будет стимулировать и развитие силовой электроники на основе SiC в будущем, далеко за пределами бума в области электроавтомобилестроения в 2020-х годах.
Следующая, последняя статья этого цикла предоставит информацию о применении SiC-транзисторов в блоках питания телекоммуникационной аппаратуры и центров обработки данных. Дополнительные сведения по SiC JFET в рассматриваемом контексте представлены в презентации и публикации , а более подробную информацию по этим и другим вопросам применения SiC-транзисторов можно найти на веб-сайте компании UnitedSiC . К сожалению, опубликованный оригинал этой части статьи содержит ряд неточностей, соответственно, он был переработан его автором и вновь опубликован как .